Farhan Mohammad, Yishan Mai, Joses Ho, Xianyuan Zhang, Stanislav Ott, James Charles Stewart, Adam Claridge-Chang
{"title":"Dopamine neurons that inform Drosophila olfactory memory have distinct, acute functions driving attraction and aversion.","authors":"Farhan Mohammad, Yishan Mai, Joses Ho, Xianyuan Zhang, Stanislav Ott, James Charles Stewart, Adam Claridge-Chang","doi":"10.1371/journal.pbio.3002843","DOIUrl":null,"url":null,"abstract":"<p><p>The brain must guide immediate responses to beneficial and harmful stimuli while simultaneously writing memories for future reference. While both immediate actions and reinforcement learning are instructed by dopamine, how dopaminergic systems maintain coherence between these 2 reward functions is unknown. Through optogenetic activation experiments, we showed that the dopamine neurons that inform olfactory memory in Drosophila have a distinct, parallel function driving attraction and aversion (valence). Sensory neurons required for olfactory memory were dispensable to dopaminergic valence. A broadly projecting set of dopaminergic cells had valence that was dependent on dopamine, glutamate, and octopamine. Similarly, a more restricted dopaminergic cluster with attractive valence was reliant on dopamine and glutamate; flies avoided opto-inhibition of this narrow subset, indicating the role of this cluster in controlling ongoing behavior. Dopamine valence was distinct from output-neuron opto-valence in locomotor pattern, strength, and polarity. Overall, our data suggest that dopamine's acute effect on valence provides a mechanism by which a dopaminergic system can coherently write memories to influence future responses while guiding immediate attraction and aversion.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002843"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002843","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The brain must guide immediate responses to beneficial and harmful stimuli while simultaneously writing memories for future reference. While both immediate actions and reinforcement learning are instructed by dopamine, how dopaminergic systems maintain coherence between these 2 reward functions is unknown. Through optogenetic activation experiments, we showed that the dopamine neurons that inform olfactory memory in Drosophila have a distinct, parallel function driving attraction and aversion (valence). Sensory neurons required for olfactory memory were dispensable to dopaminergic valence. A broadly projecting set of dopaminergic cells had valence that was dependent on dopamine, glutamate, and octopamine. Similarly, a more restricted dopaminergic cluster with attractive valence was reliant on dopamine and glutamate; flies avoided opto-inhibition of this narrow subset, indicating the role of this cluster in controlling ongoing behavior. Dopamine valence was distinct from output-neuron opto-valence in locomotor pattern, strength, and polarity. Overall, our data suggest that dopamine's acute effect on valence provides a mechanism by which a dopaminergic system can coherently write memories to influence future responses while guiding immediate attraction and aversion.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.