Historical datasets (1950-2022) of monthly water balance components for the Laurentian Great Lakes.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nicole L O'Brien, Frank Seglenieks, Lauren M Fry, Deanna Fielder, André G T Temgoua, Jacob Bruxer, Vincent Fortin, Dorothy Durnford, Andrew D Gronewold
{"title":"Historical datasets (1950-2022) of monthly water balance components for the Laurentian Great Lakes.","authors":"Nicole L O'Brien, Frank Seglenieks, Lauren M Fry, Deanna Fielder, André G T Temgoua, Jacob Bruxer, Vincent Fortin, Dorothy Durnford, Andrew D Gronewold","doi":"10.1038/s41597-024-03994-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation. The result is value-added time series, including expressions of uncertainty, that ultimately close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced reliability stemming from coordinated data, with an understanding and quantification of uncertainty, could significantly boost confidence in decision support tools for water resources practitioners and policymakers. This joint effort advances scientific understanding and strengthens strategies and policies designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting climate.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1243"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03994-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation. The result is value-added time series, including expressions of uncertainty, that ultimately close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced reliability stemming from coordinated data, with an understanding and quantification of uncertainty, could significantly boost confidence in decision support tools for water resources practitioners and policymakers. This joint effort advances scientific understanding and strengthens strategies and policies designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting climate.

劳伦伦五大湖每月水平衡组成部分的历史数据集(1950-2022 年)。
本研究为劳伦森五大湖流域建立了一个从 1950 年到 2022 年的 73 年水平衡数据集。该模型提供了一个贝叶斯统计框架,可以同化来自美国和加拿大的两国输入数据集。L2SWBM 通过该贝叶斯框架,以标准水平衡方程对输出进行约束,从而推导出可行的水平衡成分估计值。其结果是增值的时间序列,包括不确定性的表达,最终关闭相互连接的五大湖系统的水平衡。因此,L2SWBM 有助于了解数据集和水文气候参数之间的差异。通过对不确定性的理解和量化,协调数据所带来的更高可靠性将极大地增强水资源工作者和决策者对决策支持工具的信心。这一共同努力将促进对科学的理解,并加强旨在提高五大湖社区及其生态系统面对气候变化的适应能力的战略和政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信