Jørgen Ankill, Zhi Zhao, Xavier Tekpli, Elin H Kure, Vessela N Kristensen, Anthony Mathelier, Thomas Fleischer
{"title":"Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation.","authors":"Jørgen Ankill, Zhi Zhao, Xavier Tekpli, Elin H Kure, Vessela N Kristensen, Anthony Mathelier, Thomas Fleischer","doi":"10.1371/journal.pcbi.1012565","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012565"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012565","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.