The Lotus corniculatus MYB5 functions as a master regulator in proanthocyanidin biosynthesis and bioengineering.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Wenbo Jiang, Qian Li, Yaying Xia, Yinuo Yan, Shiyao Yue, Guoan Shen, Yongzhen Pang
{"title":"The Lotus corniculatus MYB5 functions as a master regulator in proanthocyanidin biosynthesis and bioengineering.","authors":"Wenbo Jiang, Qian Li, Yaying Xia, Yinuo Yan, Shiyao Yue, Guoan Shen, Yongzhen Pang","doi":"10.1007/s00299-024-03313-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>PAs varied greatly in leaves of different germplasm accessions in Lotus corniculatus and over-expression of LcMYB5 led to high PA accumulation in L. japonicus hairy roots. Proanthocyanidins (PAs) content in leaves is an important quality trait in forage species. The leaves of most forage crops accumulated no or little PAs, which makes it difficult to discover key genes involved in PA biosynthesis in the leaves. We found PAs content varied greatly in leaves of different germplasm accessions in Lotus corniculatus, which is one of the most agriculturally important forage crops. Through a combination of global transcriptional analysis, GO and KEGG analysis, and phylogenetic analysis, we discovered that LcMYB5 was strongly correlated with PA accumulation in leaves of L. corniculatus. The subcellular localization and transactivation activity assays demonstrated that LcMYB5 localized to the nucleus and acted as a transcriptional activator. Over-expression of the two homologs of LcMYB5 (LcMYB5a and LcMYB5b) in the L. japonicus hairy roots resulted in a particular high level of PAs. Global transcriptional analysis and qRT-PCR assays indicated that LcMYB5a and LcMYB5b up-regulated the transcript levels of many key PA pathway genes in the transgenic hairy roots, including structural genes (eg. CHS, F3H, LAR, ANR, and TT15) and regulatory genes (eg. TT8 and TTG1). Collectively, our data suggests that LcMYB5 independently regulates PA accumulation in the leaves of Lotus as a master regulator, which can be bioengineered for PAs production in the leaves of forage species.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 12","pages":"284"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03313-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: PAs varied greatly in leaves of different germplasm accessions in Lotus corniculatus and over-expression of LcMYB5 led to high PA accumulation in L. japonicus hairy roots. Proanthocyanidins (PAs) content in leaves is an important quality trait in forage species. The leaves of most forage crops accumulated no or little PAs, which makes it difficult to discover key genes involved in PA biosynthesis in the leaves. We found PAs content varied greatly in leaves of different germplasm accessions in Lotus corniculatus, which is one of the most agriculturally important forage crops. Through a combination of global transcriptional analysis, GO and KEGG analysis, and phylogenetic analysis, we discovered that LcMYB5 was strongly correlated with PA accumulation in leaves of L. corniculatus. The subcellular localization and transactivation activity assays demonstrated that LcMYB5 localized to the nucleus and acted as a transcriptional activator. Over-expression of the two homologs of LcMYB5 (LcMYB5a and LcMYB5b) in the L. japonicus hairy roots resulted in a particular high level of PAs. Global transcriptional analysis and qRT-PCR assays indicated that LcMYB5a and LcMYB5b up-regulated the transcript levels of many key PA pathway genes in the transgenic hairy roots, including structural genes (eg. CHS, F3H, LAR, ANR, and TT15) and regulatory genes (eg. TT8 and TTG1). Collectively, our data suggests that LcMYB5 independently regulates PA accumulation in the leaves of Lotus as a master regulator, which can be bioengineered for PAs production in the leaves of forage species.

莲花MYB5是原花青素生物合成和生物工程的主调节因子。
关键信息:不同种质的莲花叶片中原花青素含量差异很大,LcMYB5的过度表达导致日本莲毛根中原花青素的高积累。叶片中的原花青素(PAs)含量是饲料物种的一个重要品质特征。大多数饲料作物的叶片不积累或很少积累 PAs,这使得发现参与叶片中 PA 生物合成的关键基因变得困难。我们发现,作为最重要的农用饲料作物之一的莲花(Lotus corniculatus)不同种质的叶片中 PAs 含量差异很大。通过全局转录分析、GO 和 KEGG 分析以及系统发育分析,我们发现 LcMYB5 与莲叶中 PA 的积累密切相关。亚细胞定位和转录激活活性实验表明,LcMYB5 定位于细胞核,并作为转录激活因子发挥作用。LcMYB5的两个同源物(LcMYB5a和LcMYB5b)在L.全局转录分析和 qRT-PCR 检测表明,LcMYB5a 和 LcMYB5b 上调了转基因毛根中许多关键 PA 通路基因的转录水平,包括结构基因(如 CHS、F3H、LAR、ANR 和 TT15)和调控基因(如 TT8 和 TTG1)。总之,我们的数据表明,LcMYB5 作为主调节因子独立调节莲叶中 PA 的积累,可以通过生物工程方法在饲料物种的叶片中生产 PA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信