Dual-localization signals enhance mitochondrial targeted presentation of engineered proteins.

Q3 Medicine
遗传 Pub Date : 2024-11-01 DOI:10.16288/j.yczz.24-171
Bing-Qian Zhou, Shang-Pu Li, Xu Wang, Xiang-Yu Meng, Jing-Rong Deng, Jin-Liang Xing, Jian-Gang Wang, Kun Xu
{"title":"Dual-localization signals enhance mitochondrial targeted presentation of engineered proteins.","authors":"Bing-Qian Zhou, Shang-Pu Li, Xu Wang, Xiang-Yu Meng, Jing-Rong Deng, Jin-Liang Xing, Jian-Gang Wang, Kun Xu","doi":"10.16288/j.yczz.24-171","DOIUrl":null,"url":null,"abstract":"<p><p>Effective delivery of engineered proteins into mitochondria is of great significance for developing efficient mitochondrial DNA editing tools and realizing accurate treatment of mitochondrial diseases. Here, the candidate genes, <i>eGFP</i> and <i>Cas9</i>, were engineered with different mitochondrial localization signal (MLS) sequences introduced at their up- or/and down-streams. The corresponding expression vectors for the engineered proteins were constructed respectively, and HEK293T cells were transfected with these vectors. The fluorescence colocalization and Western blotting assays were used to analyze the mitochondrial targeting presentation effect of different engineered proteins. The results demonstrated that the daul-MLS modification of the eGFP and Cas9 proteins significantly improved the efficiency of mitochondrial targeted presentation, compared with the engineered proteins with single MLS added. Hence, it is speculated that dual MLS strategy can enhance the mitochondrial targeting of engineered proteins, which lays a theoretical foundation for the future development of efficient mitochondrial DNA editing tools.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 11","pages":"937-946"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Effective delivery of engineered proteins into mitochondria is of great significance for developing efficient mitochondrial DNA editing tools and realizing accurate treatment of mitochondrial diseases. Here, the candidate genes, eGFP and Cas9, were engineered with different mitochondrial localization signal (MLS) sequences introduced at their up- or/and down-streams. The corresponding expression vectors for the engineered proteins were constructed respectively, and HEK293T cells were transfected with these vectors. The fluorescence colocalization and Western blotting assays were used to analyze the mitochondrial targeting presentation effect of different engineered proteins. The results demonstrated that the daul-MLS modification of the eGFP and Cas9 proteins significantly improved the efficiency of mitochondrial targeted presentation, compared with the engineered proteins with single MLS added. Hence, it is speculated that dual MLS strategy can enhance the mitochondrial targeting of engineered proteins, which lays a theoretical foundation for the future development of efficient mitochondrial DNA editing tools.

双定位信号增强了线粒体对工程蛋白质的定向呈现。
将工程蛋白有效地输送到线粒体对开发高效的线粒体 DNA 编辑工具和实现线粒体疾病的精确治疗具有重要意义。在这里,候选基因eGFP和Cas9在其上/下游引入了不同的线粒体定位信号(MLS)序列。分别构建了工程蛋白的相应表达载体,并用这些载体转染 HEK293T 细胞。利用荧光共定位和 Western 印迹法分析了不同工程蛋白的线粒体靶向表达效果。结果表明,与添加了单MLS的工程蛋白相比,eGFP和Cas9蛋白经daul-MLS修饰后,线粒体靶向呈现的效率明显提高。因此,可以推测双MLS策略可以提高工程蛋白的线粒体靶向性,这为未来开发高效的线粒体DNA编辑工具奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信