Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, Evan E Bolton
{"title":"PubChem 2025 update.","authors":"Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, Evan E Bolton","doi":"10.1093/nar/gkae1059","DOIUrl":null,"url":null,"abstract":"<p><p>PubChem (https://pubchem.ncbi.nlm.nih.gov) is a large and highly-integrated public chemical database resource at NIH. In the past two years, significant updates were made to PubChem. With additions from over 130 new sources, PubChem contains >1000 data sources, 119 million compounds, 322 million substances and 295 million bioactivities. New interfaces, such as the consolidated literature panel and the patent knowledge panel, were developed. The consolidated literature panel combines all references about a compound into a single list, allowing users to easily find, sort, and export all relevant articles for a chemical in one place. The patent knowledge panels for a given query chemical or gene display chemicals, genes, and diseases co-mentioned with the query in patent documents, helping users to explore relationships between co-occurring entities within patent documents. PubChemRDF was expanded to include the co-occurrence data underlying the literature knowledge panel, enabling users to exploit semantic web technologies to explore entity relationships based on the co-occurrences in the scientific literature. The usability and accessibility of information on chemicals with non-discrete structures (e.g. biologics, minerals, polymers, UVCBs and glycans) were greatly improved with dedicated web pages that provide a comprehensive view of all available information in PubChem for these chemicals.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":"D1516-D1525"},"PeriodicalIF":16.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1059","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a large and highly-integrated public chemical database resource at NIH. In the past two years, significant updates were made to PubChem. With additions from over 130 new sources, PubChem contains >1000 data sources, 119 million compounds, 322 million substances and 295 million bioactivities. New interfaces, such as the consolidated literature panel and the patent knowledge panel, were developed. The consolidated literature panel combines all references about a compound into a single list, allowing users to easily find, sort, and export all relevant articles for a chemical in one place. The patent knowledge panels for a given query chemical or gene display chemicals, genes, and diseases co-mentioned with the query in patent documents, helping users to explore relationships between co-occurring entities within patent documents. PubChemRDF was expanded to include the co-occurrence data underlying the literature knowledge panel, enabling users to exploit semantic web technologies to explore entity relationships based on the co-occurrences in the scientific literature. The usability and accessibility of information on chemicals with non-discrete structures (e.g. biologics, minerals, polymers, UVCBs and glycans) were greatly improved with dedicated web pages that provide a comprehensive view of all available information in PubChem for these chemicals.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.