Alessio Mazzieri, Francesca Timio, Francesco Patera, Francesco Trepiccione, Mario Bonomini, Gianpaolo Reboldi
{"title":"Aldosterone Synthase Inhibitors for Cardiorenal Protection: Ready for Prime Time?","authors":"Alessio Mazzieri, Francesca Timio, Francesco Patera, Francesco Trepiccione, Mario Bonomini, Gianpaolo Reboldi","doi":"10.1159/000542621","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aldosterone is the principal mineralocorticoid hormone and the final effector of the renin-angiotensin-aldosterone system. This hormone is primarily synthesized by the CYP11B2 enzyme and produced by the adrenal zona glomerulosa. Through genomic and non-genomic effects, it plays an important role in cardiovascular and renal disease. To counteract aldosterone-mediated damage, steroidal mineralocorticoid receptor antagonists are recommended by international guidelines, but endocrine side effects often limit their use in a substantial proportion of patients. Conversely, nonsteroidal mineralocorticoid receptor antagonists, with an improved selectivity and safety profile, are gaining a prominent position among therapeutic pillars. However, blocking the mineralocorticoid receptors does not completely inhibit aldosterone effects because of escape mechanisms and non-genomic activity. Thus, inhibiting aldosterone synthesis could be a promising strategy to prevent aldosterone-mediated cardiorenal damage. The limited specificity for CYP11B2 and side effects due to off-target activity hampered the development of first-generation aldosterone synthase inhibitors (ASIs).</p><p><strong>Summary: </strong>The development of highly specific ASIs led to successful clinical trials in patients with resistant and uncontrolled hypertension. Additionally, a recent randomized clinical trial showed a significant benefit of ASIs in patients with chronic kidney disease and albuminuria.</p><p><strong>Key messages: </strong>The strength of the clinical evidence collected so far is still limited, and larger outcome-based clinical trials are needed to confirm the promising role of ASIs in cardiorenal damage.</p>","PeriodicalId":17813,"journal":{"name":"Kidney & blood pressure research","volume":" ","pages":"1041-1056"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney & blood pressure research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542621","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aldosterone is the principal mineralocorticoid hormone and the final effector of the renin-angiotensin-aldosterone system. This hormone is primarily synthesized by the CYP11B2 enzyme and produced by the adrenal zona glomerulosa. Through genomic and non-genomic effects, it plays an important role in cardiovascular and renal disease. To counteract aldosterone-mediated damage, steroidal mineralocorticoid receptor antagonists are recommended by international guidelines, but endocrine side effects often limit their use in a substantial proportion of patients. Conversely, nonsteroidal mineralocorticoid receptor antagonists, with an improved selectivity and safety profile, are gaining a prominent position among therapeutic pillars. However, blocking the mineralocorticoid receptors does not completely inhibit aldosterone effects because of escape mechanisms and non-genomic activity. Thus, inhibiting aldosterone synthesis could be a promising strategy to prevent aldosterone-mediated cardiorenal damage. The limited specificity for CYP11B2 and side effects due to off-target activity hampered the development of first-generation aldosterone synthase inhibitors (ASIs).
Summary: The development of highly specific ASIs led to successful clinical trials in patients with resistant and uncontrolled hypertension. Additionally, a recent randomized clinical trial showed a significant benefit of ASIs in patients with chronic kidney disease and albuminuria.
Key messages: The strength of the clinical evidence collected so far is still limited, and larger outcome-based clinical trials are needed to confirm the promising role of ASIs in cardiorenal damage.
期刊介绍:
This journal comprises both clinical and basic studies at the interface of nephrology, hypertension and cardiovascular research. The topics to be covered include the structural organization and biochemistry of the normal and diseased kidney, the molecular biology of transporters, the physiology and pathophysiology of glomerular filtration and tubular transport, endothelial and vascular smooth muscle cell function and blood pressure control, as well as water, electrolyte and mineral metabolism. Also discussed are the (patho)physiology and (patho) biochemistry of renal hormones, the molecular biology, genetics and clinical course of renal disease and hypertension, the renal elimination, action and clinical use of drugs, as well as dialysis and transplantation. Featuring peer-reviewed original papers, editorials translating basic science into patient-oriented research and disease, in depth reviews, and regular special topic sections, ''Kidney & Blood Pressure Research'' is an important source of information for researchers in nephrology and cardiovascular medicine.