Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aya Awawdeh, Alejandro Tapia, Sarah A Alshawi, Olabode Dawodu, Sarah A Gaier, Caitlin Specht, Jean-Denis Beaudoin, Jeffery M Tharp, Oscar Vargas-Rodriguez
{"title":"Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs.","authors":"Aya Awawdeh, Alejandro Tapia, Sarah A Alshawi, Olabode Dawodu, Sarah A Gaier, Caitlin Specht, Jean-Denis Beaudoin, Jeffery M Tharp, Oscar Vargas-Rodriguez","doi":"10.1093/nar/gkae1048","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1048","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.

通过工程嵌合吡咯赖氨酸 tRNA 有效抑制过早终止密码子与丙氨酸的连接。
在蛋白质编码基因中引入过早终止密码子(PTC)的突变与无法治愈的严重遗传疾病有关。许多与 PTC 相关的疾病都会危及生命,而且没有获得批准的治疗方案。具有翻译 PTC 能力的抑制性转移 RNA(sup-tRNA)是治疗这些疾病的一种很有前景的治疗策略;然而,开发具有高效率和特异性的新型 sup-tRNA 通常需要大量的工程设计和筛选工作。此外,这些努力并不总能成功地生产出更高效的 sup-tRNA。在这里,我们展示了一种能自然翻译 UAG 终止密码子的吡咯赖氨酸(Pyl)tRNA(tRNAPyl),它为开发能恢复含 PTC 基因蛋白质合成的 sup-tRNA 提供了一个有利的支架。我们创造了一系列合理设计的 Pyl tRNAScaffold Suppressor-tRNA(PASS-tRNA),它们是细菌和人类丙氨酰-tRNA 合成酶的底物。利用含 PTC 的荧光报告基因,PASS-tRNAs 可使细菌细胞中的蛋白质合成恢复到野生型水平。在人类细胞中,PASS-tRNAs 在多个报告基因中显示出强大而一致的 PTC 抑制作用,包括与乳腺癌和卵巢癌相关的肿瘤抑制基因 BRCA1 的致病突变。此外,PTC 抑制具有高度的密码子特异性,没有观察到细胞失调。总之,这些结果揭示了一类新的超级 tRNA,具有令人鼓舞的基于 tRNA 的治疗应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信