{"title":"Mitochondrial related Mendelian randomization identifies causal associations between metabolic disorders and childhood neurodevelopmental disorders.","authors":"Chenyan Hu, Junjun Li, Pengfei Heng, Jianrong Luo","doi":"10.1097/MD.0000000000040481","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder, and Tourette syndrome, are a predominant cause of health-related disabilities in children and adolescents. Nevertheless, disease biomarkers are still limited. The aim of this study was to evaluate the potential, causal relationship between mitochondrial DNA copy number (mtDNA-CN), metabolic disorders, and childhood NDDs using the two-sample Mendelian randomization (MR) method. Genetic associations with mtDNA-CN, disorders of lipoprotein metabolism, and disorders of iron metabolism were selected as exposures, and genome-wide association data from ASD, attention-deficit hyperactivity disorder, and Tourette syndrome were utilized as outcomes. Results of the study suggested that a high degree of disordered lipoprotein metabolism related increases in ASD risk result from a decrease in mtDNA-CN (disordered lipoprotein metabolism-mtDNA: inverse variance weighting β: -0.03, 95% confidence interval: -0.05 to -0.02, P = 2.08 × 10-5; mtDNA-CN-ASD: inverse variance weighting odds ratio: 0.83, 95% confidence interval: 0.69-0.99, P = .034). The research findings implied that mtDNA-CN can mediate disorders of lipoprotein metabolism, potentially influencing the development of ASD. The potential impact of the results of this study for the prevention and treatment of childhood NDDs warrants validation in robust randomized clinical trials.</p>","PeriodicalId":18549,"journal":{"name":"Medicine","volume":"103 46","pages":"e40481"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MD.0000000000040481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Childhood neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder, and Tourette syndrome, are a predominant cause of health-related disabilities in children and adolescents. Nevertheless, disease biomarkers are still limited. The aim of this study was to evaluate the potential, causal relationship between mitochondrial DNA copy number (mtDNA-CN), metabolic disorders, and childhood NDDs using the two-sample Mendelian randomization (MR) method. Genetic associations with mtDNA-CN, disorders of lipoprotein metabolism, and disorders of iron metabolism were selected as exposures, and genome-wide association data from ASD, attention-deficit hyperactivity disorder, and Tourette syndrome were utilized as outcomes. Results of the study suggested that a high degree of disordered lipoprotein metabolism related increases in ASD risk result from a decrease in mtDNA-CN (disordered lipoprotein metabolism-mtDNA: inverse variance weighting β: -0.03, 95% confidence interval: -0.05 to -0.02, P = 2.08 × 10-5; mtDNA-CN-ASD: inverse variance weighting odds ratio: 0.83, 95% confidence interval: 0.69-0.99, P = .034). The research findings implied that mtDNA-CN can mediate disorders of lipoprotein metabolism, potentially influencing the development of ASD. The potential impact of the results of this study for the prevention and treatment of childhood NDDs warrants validation in robust randomized clinical trials.
期刊介绍:
Medicine is now a fully open access journal, providing authors with a distinctive new service offering continuous publication of original research across a broad spectrum of medical scientific disciplines and sub-specialties.
As an open access title, Medicine will continue to provide authors with an established, trusted platform for the publication of their work. To ensure the ongoing quality of Medicine’s content, the peer-review process will only accept content that is scientifically, technically and ethically sound, and in compliance with standard reporting guidelines.