Deciphering sepsis: An observational bioinformatic analysis of gene expression in granulocytes from GEO dataset GSE123731.

IF 1.3 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
Li Jin, Xiaowei He, Yuanyuan Wang, Feng Shao, Jun Qian, Mengxiao Jiang, Shengjie Zhang, Wenjie Liao
{"title":"Deciphering sepsis: An observational bioinformatic analysis of gene expression in granulocytes from GEO dataset GSE123731.","authors":"Li Jin, Xiaowei He, Yuanyuan Wang, Feng Shao, Jun Qian, Mengxiao Jiang, Shengjie Zhang, Wenjie Liao","doi":"10.1097/MD.0000000000040559","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis triggers severe inflammatory responses leading to organ dysfunction and demands early diagnostic and therapeutic intervention. This study identifies differentially expressed genes (DEGs) in sepsis patients using the Gene Expression Omnibus database to find potential diagnostic and therapeutic markers. We analyzed the dataset GSE123731 via GEO2R to detect DEGs, constructed protein-protein interaction networks, and performed transcription factor analyses using Cytoscape. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted using R and FunRich software. Key genes were validated by Quantitative Reverse Transcription Polymerase Chain and co-immunoprecipitation assays in granulocytes from sepsis patients. We identified 59 DEGs significantly involved in neutrophil degranulation and immune system activation. Cytokine signaling pathways were highlighted in Kyoto Encyclopedia of Genes and Genomes analysis. Co-immunoprecipitation assays confirmed interactions involving matrix metallopeptidase 8, matrix metallopeptidase 9, and arginase 1, supporting their roles as biomarkers. The identified DEGs and validated interactions reveal crucial molecular mechanisms in sepsis, offering new avenues for diagnostic and therapeutic strategies, potentially enhancing patient outcomes.</p>","PeriodicalId":18549,"journal":{"name":"Medicine","volume":"103 46","pages":"e40559"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MD.0000000000040559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis triggers severe inflammatory responses leading to organ dysfunction and demands early diagnostic and therapeutic intervention. This study identifies differentially expressed genes (DEGs) in sepsis patients using the Gene Expression Omnibus database to find potential diagnostic and therapeutic markers. We analyzed the dataset GSE123731 via GEO2R to detect DEGs, constructed protein-protein interaction networks, and performed transcription factor analyses using Cytoscape. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted using R and FunRich software. Key genes were validated by Quantitative Reverse Transcription Polymerase Chain and co-immunoprecipitation assays in granulocytes from sepsis patients. We identified 59 DEGs significantly involved in neutrophil degranulation and immune system activation. Cytokine signaling pathways were highlighted in Kyoto Encyclopedia of Genes and Genomes analysis. Co-immunoprecipitation assays confirmed interactions involving matrix metallopeptidase 8, matrix metallopeptidase 9, and arginase 1, supporting their roles as biomarkers. The identified DEGs and validated interactions reveal crucial molecular mechanisms in sepsis, offering new avenues for diagnostic and therapeutic strategies, potentially enhancing patient outcomes.

解密败血症:来自 GEO 数据集 GSE123731 的粒细胞基因表达生物信息学观察分析。
败血症会引发严重的炎症反应,导致器官功能障碍,需要早期诊断和治疗干预。本研究利用基因表达总库数据库鉴定脓毒症患者的差异表达基因(DEG),以寻找潜在的诊断和治疗标记物。我们通过 GEO2R 对数据集 GSE123731 进行了分析,以检测 DEGs,构建了蛋白质-蛋白质相互作用网络,并使用 Cytoscape 进行了转录因子分析。利用R和FunRich软件进行了基因本体和京都基因组百科全书通路分析。通过定量反转录聚合酶链和共沉淀免疫测定对败血症患者粒细胞中的关键基因进行了验证。我们确定了 59 个 DEGs,它们与中性粒细胞脱颗粒和免疫系统激活密切相关。细胞因子信号通路在《京都基因与基因组百科全书》的分析中得到了强调。共免疫沉淀试验证实了基质金属肽酶8、基质金属肽酶9和精氨酸酶1之间的相互作用,支持它们作为生物标记物的作用。已确定的 DEGs 和已验证的相互作用揭示了败血症的关键分子机制,为诊断和治疗策略提供了新途径,有可能改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicine
Medicine 医学-医学:内科
CiteScore
2.80
自引率
0.00%
发文量
4342
审稿时长
>12 weeks
期刊介绍: Medicine is now a fully open access journal, providing authors with a distinctive new service offering continuous publication of original research across a broad spectrum of medical scientific disciplines and sub-specialties. As an open access title, Medicine will continue to provide authors with an established, trusted platform for the publication of their work. To ensure the ongoing quality of Medicine’s content, the peer-review process will only accept content that is scientifically, technically and ethically sound, and in compliance with standard reporting guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信