Antiplasmodial potential of compounds isolated from Ziziphus mucronata and their binding to Plasmodium falciparum HGXPRT using biophysical and molecular docking studies.
Kgaugelo J Masia, Ndumiso N Mhlongo, Ofentse J Pooe, Mohammed A Ibrahim, Abidemi P Kappo, Mthokozisi B C Simelane
{"title":"Antiplasmodial potential of compounds isolated from Ziziphus mucronata and their binding to Plasmodium falciparum HGXPRT using biophysical and molecular docking studies.","authors":"Kgaugelo J Masia, Ndumiso N Mhlongo, Ofentse J Pooe, Mohammed A Ibrahim, Abidemi P Kappo, Mthokozisi B C Simelane","doi":"10.1007/s00210-024-03611-9","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing resistance of Plasmodium parasites to currently available antiplasmodial therapies poses a significant challenge in treating malaria. Since ancient times, plants have served as a primary source of novel pharmacologically active compounds for drug development. Therefore, this study aimed to explore the antiplasmodial properties of pentacyclic triterpenes isolated from Ziziphus mucronata bark, with an emphasis on their mechanism of action. Dichloromethane and ethyl acetate extracts of the stem bark were subjected to silica gel column chromatography, which led to the isolation of three known triterpenoids: betulinic acid, methyl betulinate, and lupeol. The compounds were then evaluated for antiplasmodial activity against Plasmodium falciparum NF54 strains using the Plasmodium lactate dehydrogenase (pLDH) assay. In silico evaluation of the isolated compounds was conducted through molecular docking and further validated with in vitro experiments against a purified protein target, Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). Betulinic acid, methyl betulinate, and lupeol exhibited potent antiplasmodial activities with IC<sub>50</sub> values of 20, 10.11, and 7.56 µg/mL, respectively. Lupeol exhibited the highest binding energy of - 7.6 kcal/mol. Differential scanning fluorimetry revealed that lupeol decreases the T<sub>m</sub> of PfHGXPRT, thus decreasing the protein's thermal stability. At high concentrations, lupeol also increased protein absorbance, indicating the detection of hydrophobic amino acids and protein unfolding. This study proves that Z. mucronata could serve as a reservoir of effective agents for treating malaria, while also scientifically validating its use in traditional medicine. However, further experimental studies are required to substantiate its relevant therapeutic effects.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03611-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing resistance of Plasmodium parasites to currently available antiplasmodial therapies poses a significant challenge in treating malaria. Since ancient times, plants have served as a primary source of novel pharmacologically active compounds for drug development. Therefore, this study aimed to explore the antiplasmodial properties of pentacyclic triterpenes isolated from Ziziphus mucronata bark, with an emphasis on their mechanism of action. Dichloromethane and ethyl acetate extracts of the stem bark were subjected to silica gel column chromatography, which led to the isolation of three known triterpenoids: betulinic acid, methyl betulinate, and lupeol. The compounds were then evaluated for antiplasmodial activity against Plasmodium falciparum NF54 strains using the Plasmodium lactate dehydrogenase (pLDH) assay. In silico evaluation of the isolated compounds was conducted through molecular docking and further validated with in vitro experiments against a purified protein target, Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). Betulinic acid, methyl betulinate, and lupeol exhibited potent antiplasmodial activities with IC50 values of 20, 10.11, and 7.56 µg/mL, respectively. Lupeol exhibited the highest binding energy of - 7.6 kcal/mol. Differential scanning fluorimetry revealed that lupeol decreases the Tm of PfHGXPRT, thus decreasing the protein's thermal stability. At high concentrations, lupeol also increased protein absorbance, indicating the detection of hydrophobic amino acids and protein unfolding. This study proves that Z. mucronata could serve as a reservoir of effective agents for treating malaria, while also scientifically validating its use in traditional medicine. However, further experimental studies are required to substantiate its relevant therapeutic effects.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.