Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez
{"title":"Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves.","authors":"Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez","doi":"10.1007/s10265-024-01595-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01595-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.

探索长日光周期下感染木薯普通花叶病毒(CsCMV)的木薯植株的糖分分配和代谢转变:源叶和汇叶的昼夜变化。
木薯普通花叶病毒(CsCMV)是一种损害叶绿体和新陈代谢的壶状病毒,会给木薯作物造成严重的产量损失。作物产量取决于昼夜节律,影响碳分配和生长,糖信号传递也影响光-暗节律。本研究旨在阐明 CsCMV 感染在木薯贮藏根膨大之前对源木薯和沉木薯叶片昼夜碳分配、新陈代谢和防御机制的早期影响。在 CsCMV 感染植株的 24 小时周期(16:8 光周期)内检测了可溶性糖和淀粉浓度。在 ZT6、ZT16 和 ZT24/ZT0 期,分析了一系列基因的表达情况--碳水化合物代谢、SnRK1 活性标记、防御、昼夜节律标记。在 CsCMV 感染的源叶中,ZT6 阶段蔗糖增加,而葡萄糖、果糖和蔗糖在夜间上升。在受感染的叶片中发现,蔗糖与己糖的比率增加,SnRK1 活性标记基因和 PR1 转录物上调,这表明碳代谢的改变与抵御病毒感染的防御反应机制相结合。时钟控制基因 GIGANTEA 在 ZT6 和 ZT24/ZT0 期在感染叶片中的表达量减少,表明与未感染的对照植株相比,昼夜节律相位发生了变化。此外,尽管淀粉含量在 24 小时周期内保持不变,但淀粉动员转录本在 ZT24/ZT0 时下调。在沉降叶中,观察到麦芽糖(ZT6)的瞬时峰值。我们的研究结果表明,CsCMV 扰乱了植物糖代谢和分配的自然节律。蔗糖水平的峰值可能是植物内部日时钟的感染信号,在木薯与 CsCMV 相互作用期间影响植物的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信