Transformation-based gene silencing and functional characterization of an ISC effector reveal how a powdery mildew fungus disturbs salicylic acid biosynthesis and immune response in the plant.
{"title":"Transformation-based gene silencing and functional characterization of an ISC effector reveal how a powdery mildew fungus disturbs salicylic acid biosynthesis and immune response in the plant.","authors":"Jinyao Yin, Xiao Li, Linpeng Dong, Xuehuan Zhu, Yalong Chen, Wenyuan Zhao, Yuhan Liu, Jiaxin Shan, Wenbo Liu, Chunhua Lin, Weiguo Miao","doi":"10.1111/mpp.70030","DOIUrl":null,"url":null,"abstract":"<p><p>Obligate biotrophic powdery mildew fungi infect a wide range of economically important plants. These fungi often deliver effector proteins into the host tissues to suppress plant immunity and sustain infection. The phytohormone salicylic acid (SA) is one of the most important signals that activate plant immunity against pathogens. However, how powdery mildew effectors interact with host SA signalling is poorly understood. Isochorismatase (ISC) effectors from two other filamentous pathogens have been found to inhibit host SA biosynthesis by hydrolysing isochorismate, the main SA precursor in the plant cytosol. Here, we identified an ISC effector, named EqIsc1, from the rubber tree powdery mildew fungus Erysiphe quercicola. In ISC enzyme assays, EqIsc1 displayed ISC activity by transferring isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate in vitro and in transgenic Nicotiana benthamiana plants. In EqIsc1-expressing transgenic Arabidopsis thaliana, SA biosynthesis and SA-mediated immune response were significantly inhibited. In addition, we developed an electroporation-mediated transformation method for the genetic manipulation of E. quercicola. Inoculation of rubber tree leaves with EqIsc1-silenced E. quercicola strain induced SA-mediated immunity. We also detected the translocation of EqIsc1 into the plant cytosol during the interaction between E. quercicola and its host. Taken together, our results suggest that a powdery mildew effector functions as an ISC enzyme to hydrolyse isochorismate in the host cytosol, altering the SA biosynthesis and immune response.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 11","pages":"e70030"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70030","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Obligate biotrophic powdery mildew fungi infect a wide range of economically important plants. These fungi often deliver effector proteins into the host tissues to suppress plant immunity and sustain infection. The phytohormone salicylic acid (SA) is one of the most important signals that activate plant immunity against pathogens. However, how powdery mildew effectors interact with host SA signalling is poorly understood. Isochorismatase (ISC) effectors from two other filamentous pathogens have been found to inhibit host SA biosynthesis by hydrolysing isochorismate, the main SA precursor in the plant cytosol. Here, we identified an ISC effector, named EqIsc1, from the rubber tree powdery mildew fungus Erysiphe quercicola. In ISC enzyme assays, EqIsc1 displayed ISC activity by transferring isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate in vitro and in transgenic Nicotiana benthamiana plants. In EqIsc1-expressing transgenic Arabidopsis thaliana, SA biosynthesis and SA-mediated immune response were significantly inhibited. In addition, we developed an electroporation-mediated transformation method for the genetic manipulation of E. quercicola. Inoculation of rubber tree leaves with EqIsc1-silenced E. quercicola strain induced SA-mediated immunity. We also detected the translocation of EqIsc1 into the plant cytosol during the interaction between E. quercicola and its host. Taken together, our results suggest that a powdery mildew effector functions as an ISC enzyme to hydrolyse isochorismate in the host cytosol, altering the SA biosynthesis and immune response.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.