Youry Pii, Guido Orzes, Fabrizio Mazzetto, Paolo Sambo, Stefano Cesco
{"title":"Advances in viticulture <i>via</i> smart phenotyping: current progress and future directions in tackling soil copper accumulation.","authors":"Youry Pii, Guido Orzes, Fabrizio Mazzetto, Paolo Sambo, Stefano Cesco","doi":"10.3389/fpls.2024.1459670","DOIUrl":null,"url":null,"abstract":"<p><p>Modern viticulture faces significant challenges including climate change and increasing crop diseases, necessitating sustainable solutions to reduce fungicide use and mitigate soil health risks, particularly from copper accumulation. Advances in plant phenomics are essential for evaluating and tracking phenotypic traits under environmental stress, aiding in selecting resilient vine varieties. However, current methods are limited, hindering effective integration with genomic data for breeding purposes. Remote sensing technologies provide efficient, non-destructive methods for measuring biophysical and biochemical traits of plants, offering detailed insights into their physiological and nutritional state, surpassing traditional methods. Smart phenotyping is essential for selecting crop varieties with desired traits, such as pathogen-resilient vine varieties, tolerant to altered soil fertility including copper toxicity. Identifying plants with typical copper toxicity symptoms under high soil copper levels is straightforward, but it becomes complex with supra-optimal, already toxic, copper levels common in vineyard soils. This can induce multiple stress responses and interferes with nutrient acquisition, leading to ambiguous visual symptoms. Characterizing resilience to copper toxicity in vine plants <i>via</i> smart phenotyping is feasible by relating smart data with physiological assessments, supported by trained professionals who can identify primary stressors. However, complexities increase with more data sources and uncertainties in symptom interpretations. This suggests that artificial intelligence could be valuable in enhancing decision support in viticulture. While smart technologies, powered by artificial intelligence, provide significant benefits in evaluating traits and response times, the uncertainties in interpreting complex symptoms (e.g., copper toxicity) still highlight the need for human oversight in making final decisions.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1459670"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1459670","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modern viticulture faces significant challenges including climate change and increasing crop diseases, necessitating sustainable solutions to reduce fungicide use and mitigate soil health risks, particularly from copper accumulation. Advances in plant phenomics are essential for evaluating and tracking phenotypic traits under environmental stress, aiding in selecting resilient vine varieties. However, current methods are limited, hindering effective integration with genomic data for breeding purposes. Remote sensing technologies provide efficient, non-destructive methods for measuring biophysical and biochemical traits of plants, offering detailed insights into their physiological and nutritional state, surpassing traditional methods. Smart phenotyping is essential for selecting crop varieties with desired traits, such as pathogen-resilient vine varieties, tolerant to altered soil fertility including copper toxicity. Identifying plants with typical copper toxicity symptoms under high soil copper levels is straightforward, but it becomes complex with supra-optimal, already toxic, copper levels common in vineyard soils. This can induce multiple stress responses and interferes with nutrient acquisition, leading to ambiguous visual symptoms. Characterizing resilience to copper toxicity in vine plants via smart phenotyping is feasible by relating smart data with physiological assessments, supported by trained professionals who can identify primary stressors. However, complexities increase with more data sources and uncertainties in symptom interpretations. This suggests that artificial intelligence could be valuable in enhancing decision support in viticulture. While smart technologies, powered by artificial intelligence, provide significant benefits in evaluating traits and response times, the uncertainties in interpreting complex symptoms (e.g., copper toxicity) still highlight the need for human oversight in making final decisions.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.