Sara N Bramlett, Shana M Fitzmaurice, Nicholas H Harbin, Wuji Yan, Charan Bandlamudi, G Emme Van Doorn, Yoland Smith, John R Hepler
{"title":"Regulator of G protein signalling 14 (RGS14) protein expression profile in the adult mouse brain.","authors":"Sara N Bramlett, Shana M Fitzmaurice, Nicholas H Harbin, Wuji Yan, Charan Bandlamudi, G Emme Van Doorn, Yoland Smith, John R Hepler","doi":"10.1111/ejn.16592","DOIUrl":null,"url":null,"abstract":"<p><p>Regulator of G protein signalling 14 (RGS14) is a multifunctional signalling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with monkey brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra and amygdala. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behaviour and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fibre tracts including the dorsal fornix, fimbria, stria terminalis and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation and execution of actions and suggest that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.16592","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Regulator of G protein signalling 14 (RGS14) is a multifunctional signalling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with monkey brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra and amygdala. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behaviour and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fibre tracts including the dorsal fornix, fimbria, stria terminalis and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation and execution of actions and suggest that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.