Jianhang Xu, Ruiyi Zhou, Tao E Li, Sharon Hammes-Schiffer, Yosuke Kanai
{"title":"Lagrangian formulation of nuclear-electronic orbital Ehrenfest dynamics with real-time TDDFT for extended periodic systems.","authors":"Jianhang Xu, Ruiyi Zhou, Tao E Li, Sharon Hammes-Schiffer, Yosuke Kanai","doi":"10.1063/5.0230570","DOIUrl":null,"url":null,"abstract":"<p><p>We present a Lagrangian-based implementation of Ehrenfest dynamics with nuclear-electronic orbital (NEO) theory and real-time time-dependent density functional theory for extended periodic systems. In addition to a quantum dynamical treatment of electrons and selected protons, this approach allows for the classical movement of all other nuclei to be taken into account in simulations of condensed matter systems. Furthermore, we introduce a Lagrangian formulation for the traveling proton basis approach and propose new schemes to enhance its application for extended periodic systems. Validation and proof-of-principle applications are performed on electronically excited proton transfer in the o-hydroxybenzaldehyde molecule with explicit solvating water molecules. These simulations demonstrate the importance of solvation dynamics and a quantum treatment of transferring protons. This work broadens the applicability of the NEO Ehrenfest dynamics approach for studying complex heterogeneous systems in the condensed phase.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230570","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a Lagrangian-based implementation of Ehrenfest dynamics with nuclear-electronic orbital (NEO) theory and real-time time-dependent density functional theory for extended periodic systems. In addition to a quantum dynamical treatment of electrons and selected protons, this approach allows for the classical movement of all other nuclei to be taken into account in simulations of condensed matter systems. Furthermore, we introduce a Lagrangian formulation for the traveling proton basis approach and propose new schemes to enhance its application for extended periodic systems. Validation and proof-of-principle applications are performed on electronically excited proton transfer in the o-hydroxybenzaldehyde molecule with explicit solvating water molecules. These simulations demonstrate the importance of solvation dynamics and a quantum treatment of transferring protons. This work broadens the applicability of the NEO Ehrenfest dynamics approach for studying complex heterogeneous systems in the condensed phase.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.