Wafa T Al-Jamal, Cristian Reboredo, Ubah Abdi, Pia Curci, Raghed Qadadeh, Hamoud Alotaibi, Luca Casettari, Taher Hatahet
{"title":"Biodegradable lipid bilayer-assisted indocyanine green J- aggregates for photothermal therapy: Formulation, in vitro toxicity and in vivo clearance.","authors":"Wafa T Al-Jamal, Cristian Reboredo, Ubah Abdi, Pia Curci, Raghed Qadadeh, Hamoud Alotaibi, Luca Casettari, Taher Hatahet","doi":"10.1016/j.ijpharm.2024.124963","DOIUrl":null,"url":null,"abstract":"<p><p>Indocyanine green (ICG) J-aggregates (IJA) are a unique form of aggregation that exhibits superior properties to monomeric ICG. Despite their higher photoacoustic (PA) signals for imaging and heating stability during photothermal therapy (PTT), they exhibit low stability under a biological milieu. Our group previously proposed a simple procedure for in-situ preparation of IJA into liposomes, accelerating their formation and optical properties. To comprehend their potential applications, we systematically investigated the effect of the lipid bilayer composition on ICG J-aggregation and stability. Moreover, their in vitro compatibility and photothermal toxicity in monolayers and cancer spheroids, besides their in vivo biodistribution and clearance were evaluated. Our findings revealed the importance of high cholesterol and PEG-lipid content and low charged lipids (∼ 5 mol %) in liposomes to promote a high IJA/ICG ratio and, thus, high heating stability. More importantly, IJA-liposomes revealed high biocompatibility in monolayer and cancer spheroids with efficient photothermal toxicity. Finally, IJA-liposomes were cleared from the body without toxicity. Interestingly, IJA-liposomes mainly showed lower affinity to the liver than monomeric ICG, resulting in higher renal clearance. Overall, our biodegradable IJA-liposomes could be an excellent alternative to gold-based agents suitable for PA imaging and cancer PTT.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"124963"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.124963","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Indocyanine green (ICG) J-aggregates (IJA) are a unique form of aggregation that exhibits superior properties to monomeric ICG. Despite their higher photoacoustic (PA) signals for imaging and heating stability during photothermal therapy (PTT), they exhibit low stability under a biological milieu. Our group previously proposed a simple procedure for in-situ preparation of IJA into liposomes, accelerating their formation and optical properties. To comprehend their potential applications, we systematically investigated the effect of the lipid bilayer composition on ICG J-aggregation and stability. Moreover, their in vitro compatibility and photothermal toxicity in monolayers and cancer spheroids, besides their in vivo biodistribution and clearance were evaluated. Our findings revealed the importance of high cholesterol and PEG-lipid content and low charged lipids (∼ 5 mol %) in liposomes to promote a high IJA/ICG ratio and, thus, high heating stability. More importantly, IJA-liposomes revealed high biocompatibility in monolayer and cancer spheroids with efficient photothermal toxicity. Finally, IJA-liposomes were cleared from the body without toxicity. Interestingly, IJA-liposomes mainly showed lower affinity to the liver than monomeric ICG, resulting in higher renal clearance. Overall, our biodegradable IJA-liposomes could be an excellent alternative to gold-based agents suitable for PA imaging and cancer PTT.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.