Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts.

IF 2.2 4区 化学 Q2 CHEMISTRY, ORGANIC
Beilstein Journal of Organic Chemistry Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.3762/bjoc.20.243
Ritu Mamgain, Kokila Sakthivel, Fateh V Singh
{"title":"Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts.","authors":"Ritu Mamgain, Kokila Sakthivel, Fateh V Singh","doi":"10.3762/bjoc.20.243","DOIUrl":null,"url":null,"abstract":"<p><p>Diaryliodonium salts have become widely recognized as arylating agents in the last two decades. Both, symmetrical and unsymmetrical forms of these salts serve as effective electrophilic arylating reagents in various organic syntheses. The use of diaryliodoniums in C-C and carbon-heteroatom bond formations, particularly under metal-free conditions, has further enhanced the popularity of these reagents. In this review, we concentrate on various arylation reactions involving carbon and other heteroatoms, encompassing rearrangement reactions in the absence of any metal catalyst, and summarize advancements made in the last five years.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"20 ","pages":"2891-2920"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.243","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Diaryliodonium salts have become widely recognized as arylating agents in the last two decades. Both, symmetrical and unsymmetrical forms of these salts serve as effective electrophilic arylating reagents in various organic syntheses. The use of diaryliodoniums in C-C and carbon-heteroatom bond formations, particularly under metal-free conditions, has further enhanced the popularity of these reagents. In this review, we concentrate on various arylation reactions involving carbon and other heteroatoms, encompassing rearrangement reactions in the absence of any metal catalyst, and summarize advancements made in the last five years.

涉及超价碘盐的无过渡金属芳基化反应的最新进展。
在过去的二十年里,二迭碘鎓盐作为芳基化试剂得到了广泛认可。这些盐的对称和不对称形式在各种有机合成中都是有效的亲电芳基化试剂。特别是在无金属条件下,二芳碘鎓在 C-C 和碳-杂原子键形成中的应用进一步提高了这些试剂的受欢迎程度。在本综述中,我们将集中讨论涉及碳和其他杂原子的各种芳基化反应,包括在无任何金属催化剂条件下的重排反应,并总结过去五年中取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信