{"title":"Synthesis, Characterization, and Thin-Film Properties of Post-Functionalized N,N-Dimethylanilinoethynyl-Substituted Cyclobutenofullerenes.","authors":"Michio Yamada, Haruki Sakuma, Waner He, Hiromichi Araki, Yutaka Maeda, Mitsuaki Suzuki, Tsuyoshi Michinobu","doi":"10.1002/asia.202401111","DOIUrl":null,"url":null,"abstract":"<p><p>A π-extended cyclobutenofullerene containing an N,N-dimethylanilinoethynyl group was synthesized via a one-pot cascade reaction of C60 with the corresponding propargylic phosphate. The cyclobutenofullerene was further modified using either one-pot or sequential post-functionalization methods, yielding derivatives containing altered addend structures. During one-pot post-functionalization, hydration reaction of the alkyne moiety continued after the formation of cyclobutenofullerenes. The sequential post-functionalization approach involved introducing the tetracyanobutadiene structure through formal [2 + 2] cycloaddition and a subsequent retroelectrocyclization reaction with tetracyanoethylene. The electronic and optical properties of the derivatives in solution, as well as their field-effect transistor behavior in thin films, were thoroughly assessed to elucidate the optoelectronic differences arising from various addend structures. The properties of the three characteristic cyclobutenofullerene derivatives in the solution and thin films significantly varied depending on the addends. Among the three derivatives studied, only cyclobutenofullerene, featuring a folded structure induced by the hydration of the alkyne moiety, exhibited n-type semiconductor behavior in the thin films. The findings of this study present a novel methodology for synthesizing and functionalizing fullerene derivatives, together with a conceptual framework for tailoring molecular properties.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401111"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401111","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A π-extended cyclobutenofullerene containing an N,N-dimethylanilinoethynyl group was synthesized via a one-pot cascade reaction of C60 with the corresponding propargylic phosphate. The cyclobutenofullerene was further modified using either one-pot or sequential post-functionalization methods, yielding derivatives containing altered addend structures. During one-pot post-functionalization, hydration reaction of the alkyne moiety continued after the formation of cyclobutenofullerenes. The sequential post-functionalization approach involved introducing the tetracyanobutadiene structure through formal [2 + 2] cycloaddition and a subsequent retroelectrocyclization reaction with tetracyanoethylene. The electronic and optical properties of the derivatives in solution, as well as their field-effect transistor behavior in thin films, were thoroughly assessed to elucidate the optoelectronic differences arising from various addend structures. The properties of the three characteristic cyclobutenofullerene derivatives in the solution and thin films significantly varied depending on the addends. Among the three derivatives studied, only cyclobutenofullerene, featuring a folded structure induced by the hydration of the alkyne moiety, exhibited n-type semiconductor behavior in the thin films. The findings of this study present a novel methodology for synthesizing and functionalizing fullerene derivatives, together with a conceptual framework for tailoring molecular properties.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).