The Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth ComplexesThe Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth Complexes.
Katharina L Deuter, Felix Kather, Michael Linseis, Michael Bodensteiner, Rainer Friedrich Winter
{"title":"The Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth ComplexesThe Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth Complexes.","authors":"Katharina L Deuter, Felix Kather, Michael Linseis, Michael Bodensteiner, Rainer Friedrich Winter","doi":"10.1002/chem.202403761","DOIUrl":null,"url":null,"abstract":"<p><p>We present a series of six hypervalent bismuth complexes Bi(R1PDPR2)X bearing ligands characterized by the pyridine-2,6-bis(pyrrolide) (PDP) structural motif. While bismuth holds considerable potential for facilitating efficient intersystem crossing (ISC), reports on phosphorescent molecular bismuth complexes are still scarce and mostly based on systems that exhibit inter‑ or intraligand charge transfer character of their optical excitations. Herein, the UV/vis absorptive, luminescent, and electrochemical properties of complexes Bi(R1PDPR2)X are explored, where the substituents R1 and R2, as well as the halide ligand X are varied. These compounds are characterized by an intense HOMO®LUMO transition of mixed ligand-to-metal charge transfer (LMCT) and interligand charge transfer (LL'CT) character, as shown by time-dependent density functional theory (TD-DFT) calculations. At 77 K in a 2-MeTHF matrix, these compounds exhibit red, long-lived phosphorescence with lifetimes ranging from 671 to 20 µs. Cyclic voltammetry measurements and TD-DFT calculations show that the substituents influence HOMO and LUMO energies to almost equal extent, resulting in nearly constant emission wavelengths throughout this series. Single-crystal X-ray diffraction studies of four of the six complexes exemplify the inherent Lewis acidity of the coordinated Bi3+ ion, in spite of its hypervalency.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403761"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403761","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a series of six hypervalent bismuth complexes Bi(R1PDPR2)X bearing ligands characterized by the pyridine-2,6-bis(pyrrolide) (PDP) structural motif. While bismuth holds considerable potential for facilitating efficient intersystem crossing (ISC), reports on phosphorescent molecular bismuth complexes are still scarce and mostly based on systems that exhibit inter‑ or intraligand charge transfer character of their optical excitations. Herein, the UV/vis absorptive, luminescent, and electrochemical properties of complexes Bi(R1PDPR2)X are explored, where the substituents R1 and R2, as well as the halide ligand X are varied. These compounds are characterized by an intense HOMO®LUMO transition of mixed ligand-to-metal charge transfer (LMCT) and interligand charge transfer (LL'CT) character, as shown by time-dependent density functional theory (TD-DFT) calculations. At 77 K in a 2-MeTHF matrix, these compounds exhibit red, long-lived phosphorescence with lifetimes ranging from 671 to 20 µs. Cyclic voltammetry measurements and TD-DFT calculations show that the substituents influence HOMO and LUMO energies to almost equal extent, resulting in nearly constant emission wavelengths throughout this series. Single-crystal X-ray diffraction studies of four of the six complexes exemplify the inherent Lewis acidity of the coordinated Bi3+ ion, in spite of its hypervalency.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.