Label-Free Prediction of Tumor Metastatic Potential via Ramanome.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuxing Zhang, Yanmei Zhang, Ruining Gong, Xiaolan Liu, Yu Zhang, Luyang Sun, Qingyue Ma, Jia Wang, Ke Lei, Linlin Ren, Chenyang Zhao, Xiaoshan Zheng, Jian Xu, He Ren
{"title":"Label-Free Prediction of Tumor Metastatic Potential via Ramanome.","authors":"Yuxing Zhang, Yanmei Zhang, Ruining Gong, Xiaolan Liu, Yu Zhang, Luyang Sun, Qingyue Ma, Jia Wang, Ke Lei, Linlin Ren, Chenyang Zhao, Xiaoshan Zheng, Jian Xu, He Ren","doi":"10.1002/smtd.202400861","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing metastatic potential is crucial for cancer treatment strategies. However, current methods are time-consuming, labor-intensive, and have limited sample accessibility. Therefore, this study aims to investigate the urgent need for rapid and accurate approaches by proposing a Ramanome-based metastasis index (RMI) using machine learning of single-cell Raman spectra to rapidly and accurately assess tumor cell metastatic potential. Validation with various cultured tumor cells and a mouse orthotopic model of pancreatic ductal adenocarcinoma show a Kendall rank correlation coefficient of 1 compared to Transwell experiments and histopathological assessments. Significantly, lipid-related Raman peaks are most influential in determining RMI. The lipidomic analysis confirmed strong correlations between metastatic potential and phosphatidylcholine, phosphatidylethanolamine, cholesteryl ester, ceramide, and bis(monoacylglycero)phosphate, crucial in cell membrane composition or signal transduction. Therefore, RMI is a valuable tool for predicting tumor metastatic potential and providing insights into metastasis mechanisms.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400861"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing metastatic potential is crucial for cancer treatment strategies. However, current methods are time-consuming, labor-intensive, and have limited sample accessibility. Therefore, this study aims to investigate the urgent need for rapid and accurate approaches by proposing a Ramanome-based metastasis index (RMI) using machine learning of single-cell Raman spectra to rapidly and accurately assess tumor cell metastatic potential. Validation with various cultured tumor cells and a mouse orthotopic model of pancreatic ductal adenocarcinoma show a Kendall rank correlation coefficient of 1 compared to Transwell experiments and histopathological assessments. Significantly, lipid-related Raman peaks are most influential in determining RMI. The lipidomic analysis confirmed strong correlations between metastatic potential and phosphatidylcholine, phosphatidylethanolamine, cholesteryl ester, ceramide, and bis(monoacylglycero)phosphate, crucial in cell membrane composition or signal transduction. Therefore, RMI is a valuable tool for predicting tumor metastatic potential and providing insights into metastasis mechanisms.

通过拉曼光谱无标记预测肿瘤转移潜力
评估转移潜力对癌症治疗策略至关重要。然而,目前的方法耗时耗力,样本获取受限。因此,本研究提出了一种基于拉曼光谱的转移指数(RMI),利用单细胞拉曼光谱的机器学习来快速准确地评估肿瘤细胞的转移潜力,从而满足对快速准确方法的迫切需求。通过对各种培养的肿瘤细胞和小鼠胰腺导管腺癌原位模型进行验证,结果表明,与 Transwell 实验和组织病理学评估相比,肯德尔秩相关系数为 1。值得注意的是,与脂质相关的拉曼峰对确定 RMI 的影响最大。脂质体分析证实,转移潜能与磷脂酰胆碱、磷脂酰乙醇胺、胆固醇酯、神经酰胺和双(单酰基甘油)磷酸之间存在很强的相关性,这些物质对细胞膜组成或信号转导至关重要。因此,RMI 是预测肿瘤转移潜力和深入了解转移机制的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信