Unraveling the Multifunctional Sites of Ag Single-Atom and Nanoparticles Confined Within Carbon Nitride Nanotubes for Synergistic Photocatalytic Hydrogen Evolution.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-18 DOI:10.1002/smll.202408655
Yue Sun, Jingkai Lin, Weiwei Yang, Xinqing Chen, Huayang Zhang, Yazi Liu, Haifeng Qi, Bingyu Song, Gancheng Zuo, Shaogui Yang, Huan He, Fei Yu, Zupeng Chen
{"title":"Unraveling the Multifunctional Sites of Ag Single-Atom and Nanoparticles Confined Within Carbon Nitride Nanotubes for Synergistic Photocatalytic Hydrogen Evolution.","authors":"Yue Sun, Jingkai Lin, Weiwei Yang, Xinqing Chen, Huayang Zhang, Yazi Liu, Haifeng Qi, Bingyu Song, Gancheng Zuo, Shaogui Yang, Huan He, Fei Yu, Zupeng Chen","doi":"10.1002/smll.202408655","DOIUrl":null,"url":null,"abstract":"<p><p>The development of novel nano-single-atom-site catalysts with optimized electron configurations and active water adsorption (<sup>*</sup>H<sub>2</sub>O) to release hydrogen protons (<sup>*</sup>H) is paramount for photocatalytic hydrogen evolution (PHE), a multi-step reaction process involving two electrons. In this study, an atom-confinement and thermal reduction strategy is introduced to achieve synergistic Ag single-atoms (Ag<sub>1</sub>) and nanoparticles (Ag<sub>NPs</sub>) confined within carbon nitride nanotubes (Ag<sub>1+NPs</sub>-CN) for enhanced photocatalytic hydrogen evolution. Mechanistic investigations reveal that H<sub>2</sub>O adsorption/dissociation predominantly occurs at Ag<sub>1</sub> sites, while Ag<sub>NPs</sub> sites notably facilitate H<sub>2</sub> release, indicating the synergistic effect between Ag<sub>1</sub> and Ag<sub>NPs</sub> in the H<sub>2</sub> evolution reaction. Furthermore, the effective confining of Ag species is beneficial for trapping electrons in highly active reaction regions, while the \"electronic metal-support interactions\" (EMSIs) of Ag<sub>NPs</sub> and Ag<sub>1</sub>-C<sub>2</sub>N sites regulate the d-band centers and effectively optimize the adsorption/desorption of intermediates in photocatalytic hydrogen evolution, leading to enhanced H<sub>2</sub> production performance. This work demonstrates the potential of the construction of synergistic photocatalysts for efficient energy conversion and storage; Hydrogen production; Nanoparticles; Photocatalysis; Single atom; and Synergistic effect.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2408655"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of novel nano-single-atom-site catalysts with optimized electron configurations and active water adsorption (*H2O) to release hydrogen protons (*H) is paramount for photocatalytic hydrogen evolution (PHE), a multi-step reaction process involving two electrons. In this study, an atom-confinement and thermal reduction strategy is introduced to achieve synergistic Ag single-atoms (Ag1) and nanoparticles (AgNPs) confined within carbon nitride nanotubes (Ag1+NPs-CN) for enhanced photocatalytic hydrogen evolution. Mechanistic investigations reveal that H2O adsorption/dissociation predominantly occurs at Ag1 sites, while AgNPs sites notably facilitate H2 release, indicating the synergistic effect between Ag1 and AgNPs in the H2 evolution reaction. Furthermore, the effective confining of Ag species is beneficial for trapping electrons in highly active reaction regions, while the "electronic metal-support interactions" (EMSIs) of AgNPs and Ag1-C2N sites regulate the d-band centers and effectively optimize the adsorption/desorption of intermediates in photocatalytic hydrogen evolution, leading to enhanced H2 production performance. This work demonstrates the potential of the construction of synergistic photocatalysts for efficient energy conversion and storage; Hydrogen production; Nanoparticles; Photocatalysis; Single atom; and Synergistic effect.

Abstract Image

揭示封闭在氮化碳纳米管中的银单原子和纳米粒子的多功能位点,实现协同光催化氢气转化
光催化氢进化(PHE)是一个涉及两个电子的多步反应过程,开发具有优化电子配置和活性水吸附(*H2O)以释放氢质子(*H)的新型纳米单原子位点催化剂至关重要。在本研究中,引入了一种原子致密和热还原策略,以实现氮化碳纳米管(Ag1+NPs-CN)中的银单原子(Ag1)和纳米颗粒(AgNPs)的协同作用,从而增强光催化氢进化。机理研究发现,H2O 的吸附/解离主要发生在 Ag1 位点,而 AgNPs 位点则显著促进 H2 的释放,这表明 Ag1 和 AgNPs 在 H2 演化反应中具有协同效应。此外,Ag 物种的有效限制有利于在高活性反应区捕获电子,而 AgNPs 和 Ag1-C2N 位点的 "电子金属-支撑相互作用"(EMSIs)调节了 d 带中心,有效优化了光催化氢气进化过程中中间产物的吸附/解吸,从而提高了 H2 生成性能。这项工作展示了构建协同光催化剂以实现高效能量转换和储存的潜力;制氢;纳米粒子;光催化;单原子;协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信