Revolutionizing High-Temperature Electrical Properties of Epoxy Resin via Tailoring Weak Conjugation Rigid Structures.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-18 DOI:10.1002/smll.202407579
Jie Li, Boya Zhang, Xuanjie Zhang, Yixuan Li, Kaixuan Li, Tianyu Wang, Xingwen Li
{"title":"Revolutionizing High-Temperature Electrical Properties of Epoxy Resin via Tailoring Weak Conjugation Rigid Structures.","authors":"Jie Li, Boya Zhang, Xuanjie Zhang, Yixuan Li, Kaixuan Li, Tianyu Wang, Xingwen Li","doi":"10.1002/smll.202407579","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating demand for high-power and compact-size advanced electronic devices and power systems necessitates polymers to exhibit superior electrical properties even under harsh environments. However, reconciling the seemingly contradictory attributes of excellent electrical properties and thermal stability poses a formidable challenge for current epoxy polymer (EP) materials and their applications. To meet the need, here two classes of bi-aryl diamine curing agents are described that enable polymers to exhibit well-balanced thermal and dielectric properties with functional bridging groups. A weak conjugation system in highly thermally stable polymers with an aromatic backbone is constructed, using electron-modulating bridging groups to immobilize intramolecular free carriers by tailoring trap sites, and bulky bridging groups to prevent molecular stacking to inhibit intermolecular charge transport. The resultant polymer exhibits a volume resistance of 7.45 × 10<sup>12</sup> Ω m and a direct current breakdown strength of 368.74 kV mm<sup>-1</sup> at 120 °C, which are 2.2 and 2.4 times higher than that of commercial anhydride-cured EP, respectively. It is demonstrated to be due to the inhibition of charge injection and transport. The proposed aromatic amine multimolecule approach, combined with diverse functional bridging groups, is a promising direction for exploring next-generation EP insulation materials suitable for extreme conditions.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407579"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407579","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating demand for high-power and compact-size advanced electronic devices and power systems necessitates polymers to exhibit superior electrical properties even under harsh environments. However, reconciling the seemingly contradictory attributes of excellent electrical properties and thermal stability poses a formidable challenge for current epoxy polymer (EP) materials and their applications. To meet the need, here two classes of bi-aryl diamine curing agents are described that enable polymers to exhibit well-balanced thermal and dielectric properties with functional bridging groups. A weak conjugation system in highly thermally stable polymers with an aromatic backbone is constructed, using electron-modulating bridging groups to immobilize intramolecular free carriers by tailoring trap sites, and bulky bridging groups to prevent molecular stacking to inhibit intermolecular charge transport. The resultant polymer exhibits a volume resistance of 7.45 × 1012 Ω m and a direct current breakdown strength of 368.74 kV mm-1 at 120 °C, which are 2.2 and 2.4 times higher than that of commercial anhydride-cured EP, respectively. It is demonstrated to be due to the inhibition of charge injection and transport. The proposed aromatic amine multimolecule approach, combined with diverse functional bridging groups, is a promising direction for exploring next-generation EP insulation materials suitable for extreme conditions.

Abstract Image

通过定制弱共轭刚性结构革新环氧树脂的高温电气性能。
对大功率、紧凑型先进电子设备和电力系统的需求不断增长,这就要求聚合物即使在恶劣的环境下也能表现出卓越的电气性能。然而,如何协调优异的电气性能和热稳定性这两个看似矛盾的特性,对当前的环氧聚合物(EP)材料及其应用提出了严峻的挑战。为了满足这一需求,本文介绍了两类双芳基二胺固化剂,它们能使聚合物在热性能和介电性能方面表现出良好的平衡,并具有功能性桥接基团。我们在具有芳香族骨架的高热稳定性聚合物中构建了一个弱共轭体系,利用电子调节桥基通过定制捕获位点固定分子内自由载流子,并利用笨重桥基防止分子堆叠以抑制分子间电荷传输。这种聚合物在 120 °C 时的体积电阻为 7.45 × 1012 Ω m,直流击穿强度为 368.74 kV mm-1,分别是商用酸酐固化 EP 的 2.2 倍和 2.4 倍。这证明是由于抑制了电荷注入和传输。所提出的芳香胺多分子方法与多种功能桥基相结合,是探索适用于极端条件的下一代 EP 绝缘材料的一个很有前景的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信