{"title":"Inverse Vulcanization of Aziridines: Enhancing Polysulfides for Superior Mechanical Strength and Adhesive Performance.","authors":"Nikos Hadjichristidis, Jieai Fan, Changzheng Ju, Songjie Fan, Xia Li, Zhen Zhang","doi":"10.1002/anie.202418764","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel approach to inverse vulcanization by utilizing a commercially available triaziridine crosslinker as an alternative to conventional olefin-based crosslinkers. The model reactions reveal a self-catalyzed ring-opening of \"unactivated\" aziridine with elemental sulfur, forming oligosulfide-functionalized diamines. The triaziridine-derived polysulfides exhibit impressive mechanical properties, achieving a maximum stress of ~8.3 MPa and an elongation at break of ~107%. The incorporation of silicon dioxide (20 wt%) enhances the composite's rigidity, yielding a Young's modulus of ~0.94 GPa. Furthermore, these polysulfides display excellent adhesion strength on various substrates, such as aluminum (~7.0 MPa), walnut (~9.6 MPa), and steel (~11.0 MPa), with substantial retention of adhesion strength (~3.3 MPa on steel) at -196 °C. The straightforward synthetic process, combined with the accessibility of the triaziridine crosslinker, emphasizes the potential for further innovations in sulfur polymer chemistry.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202418764"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel approach to inverse vulcanization by utilizing a commercially available triaziridine crosslinker as an alternative to conventional olefin-based crosslinkers. The model reactions reveal a self-catalyzed ring-opening of "unactivated" aziridine with elemental sulfur, forming oligosulfide-functionalized diamines. The triaziridine-derived polysulfides exhibit impressive mechanical properties, achieving a maximum stress of ~8.3 MPa and an elongation at break of ~107%. The incorporation of silicon dioxide (20 wt%) enhances the composite's rigidity, yielding a Young's modulus of ~0.94 GPa. Furthermore, these polysulfides display excellent adhesion strength on various substrates, such as aluminum (~7.0 MPa), walnut (~9.6 MPa), and steel (~11.0 MPa), with substantial retention of adhesion strength (~3.3 MPa on steel) at -196 °C. The straightforward synthetic process, combined with the accessibility of the triaziridine crosslinker, emphasizes the potential for further innovations in sulfur polymer chemistry.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.