EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-19 DOI:10.1002/smll.202406245
Mengxue Zhou, Chuang Zhou, Huan Geng, Zhiwei Huang, Zhiyuan Lin, Ying Wang, Yin Zhu, Jiang Shi, Junfeng Tan, Li Guo, Yanni Zhao, Yue Zhang, Qunhua Peng, Haijun Yu, Weidong Dai, Haipeng Lv, Zhi Lin
{"title":"EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer.","authors":"Mengxue Zhou, Chuang Zhou, Huan Geng, Zhiwei Huang, Zhiyuan Lin, Ying Wang, Yin Zhu, Jiang Shi, Junfeng Tan, Li Guo, Yanni Zhao, Yue Zhang, Qunhua Peng, Haijun Yu, Weidong Dai, Haipeng Lv, Zhi Lin","doi":"10.1002/smll.202406245","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2406245"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.

Abstract Image

磷酸酶和酸度双响应纳米治疗剂的EGCG深度肿瘤穿透技术用于乳腺癌的联合治疗
致密胶原纤维的存在是三阴性乳腺癌(TNBC)的典型特征。虽然这些纤维阻碍了药物渗透并降低了治疗效果,但胶原基质的消耗与肿瘤转移有关。为解决这一问题,首先利用表没食子儿茶素-3-棓酸盐(EGCG)破坏致密的胶原基质,并通过特异性阻断成纤维细胞和肿瘤细胞中的 TGF-β/Smad 通路来缓解纤维化。接下来,通过整合铁基金属有机框架和金纳米粒子,设计了一种负载甲氨蝶呤(MTX)的磷酸盐和 pH 双响应纳米药物(pHA@MOF-Au/MTX),用于改善 TNBC 的化疗/化学动力学治疗。由于 EGCG 对肿瘤基质的重塑作用,用 pH 值(低)插入肽进行的表面修饰大大增强了纳米药物与 4T1 细胞的结合力。高浓度EGCG通过调节线粒体谷氨酰胺代谢抑制了谷胱甘肽过氧化物酶,从而促进了肿瘤细胞的铁凋亡。此外,在 TNBC 小鼠模型中,EGCG 和 pHA@MOF-Au/MTX 的连续治疗显示出显著的抗肿瘤效果,肿瘤生长抑制率达 79.9%,肺转移率达 96.8%。总之,本研究开发的联合策略可提高化疗/化学动力学疗法在 TNBC 中的疗效,是 EGCG 的创新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信