Limited Preservation of Strike-Slip Surface Displacement in the Geomorphic Record

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Nadine G. Reitman, Yann Klinger, Richard W. Briggs, Ryan D. Gold
{"title":"Limited Preservation of Strike-Slip Surface Displacement in the Geomorphic Record","authors":"Nadine G. Reitman,&nbsp;Yann Klinger,&nbsp;Richard W. Briggs,&nbsp;Ryan D. Gold","doi":"10.1029/2024JB028692","DOIUrl":null,"url":null,"abstract":"<p>Offset geomorphic markers are commonly used to interpret slip history of strike-slip faults and have played an important role in forming earthquake recurrence models. These data sets are typically analyzed using cumulative probability methods to interpret average amounts of slip in past earthquakes. However, interpretation of the geomorphic record to infer surface slip history is complicated by slip variability, measurement uncertainty, and modification of offset features in the landscape. To investigate how well geomorphic data record surface slip, we use offset measurements from recent strike-slip surface ruptures (<i>n</i> = 39), faults with geomorphic evidence of multiple strike-slip earthquakes (<i>n</i> = 29), and synthetic slip distributions with added noise (<i>n</i><span></span><math>\n <semantics>\n <mrow>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${ &gt;} $</annotation>\n </semantics></math>10,000) to examine the constraints of the geomorphic record and the underlying assumptions of the cumulative offset probability distribution analysis method. We find that the geomorphic record is unlikely to resolve more than two paleo-slip distributions, except in specific cases with low slip variability, high slip-per-event, and semiarid climate. In cases where site-specific conditions allow for interpretation of more than two earthquakes, lateral extrapolation along a fault is not straightforward because on-fault displacement and distributed deformation may be spatially variable in each earthquake. We also find that average slip in modern earthquakes is adequately recovered by probability methods, but the reported prevalence of strike-slip faults with characteristic slip history is not supported by geomorphic data. We also propose updated methods to interpret slip history and construct uncertainty bounds for paleo-slip distributions.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028692","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Offset geomorphic markers are commonly used to interpret slip history of strike-slip faults and have played an important role in forming earthquake recurrence models. These data sets are typically analyzed using cumulative probability methods to interpret average amounts of slip in past earthquakes. However, interpretation of the geomorphic record to infer surface slip history is complicated by slip variability, measurement uncertainty, and modification of offset features in the landscape. To investigate how well geomorphic data record surface slip, we use offset measurements from recent strike-slip surface ruptures (n = 39), faults with geomorphic evidence of multiple strike-slip earthquakes (n = 29), and synthetic slip distributions with added noise (n > ${ >} $ 10,000) to examine the constraints of the geomorphic record and the underlying assumptions of the cumulative offset probability distribution analysis method. We find that the geomorphic record is unlikely to resolve more than two paleo-slip distributions, except in specific cases with low slip variability, high slip-per-event, and semiarid climate. In cases where site-specific conditions allow for interpretation of more than two earthquakes, lateral extrapolation along a fault is not straightforward because on-fault displacement and distributed deformation may be spatially variable in each earthquake. We also find that average slip in modern earthquakes is adequately recovered by probability methods, but the reported prevalence of strike-slip faults with characteristic slip history is not supported by geomorphic data. We also propose updated methods to interpret slip history and construct uncertainty bounds for paleo-slip distributions.

地貌记录中有限保存的走向滑动表面位移
偏移地貌标记通常用于解释走向滑动断层的滑动历史,在形成地震复发模型方面发挥了重要作用。这些数据集通常采用累积概率法进行分析,以解释过去地震的平均滑动量。然而,由于滑动的可变性、测量的不确定性以及地貌偏移特征的改变,解释地貌记录以推断地表滑动历史变得非常复杂。为了研究地貌数据对地表滑动的记录效果,我们使用了近期走向滑动地表断裂的偏移测量值(n = 39)、具有多次走向滑动地震地貌证据的断层(n = 29),以及添加了噪声的合成滑动分布(n > ${ >} $ 10,000),以检验地貌记录的约束条件和累积偏移概率分布分析方法的基本假设。我们发现,地貌记录不太可能解决两个以上的古滑动分布问题,除非在滑动变异性低、每次滑动量大、气候半干旱的特定情况下。在特定地点的条件允许解释两次以上地震的情况下,沿断层的横向推断并不简单,因为每次地震中断层位移和分布变形在空间上可能是可变的。我们还发现,现代地震中的平均滑动可通过概率方法得到充分恢复,但地貌数据并不支持所报道的具有特征滑动历史的走向滑动断层的普遍性。我们还提出了解释滑动历史的最新方法,并构建了古滑动分布的不确定性边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信