Decarbonization of Metallurgy and Steelmaking Industries Using Biochar: A Review

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Tumpa R. Sarker, Dilshad Z. Ethen, Sonil Nanda
{"title":"Decarbonization of Metallurgy and Steelmaking Industries Using Biochar: A Review","authors":"Tumpa R. Sarker,&nbsp;Dilshad Z. Ethen,&nbsp;Sonil Nanda","doi":"10.1002/ceat.202400217","DOIUrl":null,"url":null,"abstract":"<p>The iron and steelmaking industries play a significant role in the manufacturing sector but result in significant greenhouse gas emissions. Biochar has recently gained attention as a potential substitute for coal in metallurgical processes due to its carbon capture potential. This review explores the potential of biochar as a sustainable substitute for coal in steelmaking industries. Notable research works have shown that substituting biochar in amounts ranging from as low as 5 % to as high as 50 % can be feasible and beneficial in processes such as coke making, iron sintering, blast furnaces, and electric furnaces. The information presented in this review can be applied to create sustainable and competitive alternatives to fossil fuels to help decarbonize metallurgical industries.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceat.202400217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The iron and steelmaking industries play a significant role in the manufacturing sector but result in significant greenhouse gas emissions. Biochar has recently gained attention as a potential substitute for coal in metallurgical processes due to its carbon capture potential. This review explores the potential of biochar as a sustainable substitute for coal in steelmaking industries. Notable research works have shown that substituting biochar in amounts ranging from as low as 5 % to as high as 50 % can be feasible and beneficial in processes such as coke making, iron sintering, blast furnaces, and electric furnaces. The information presented in this review can be applied to create sustainable and competitive alternatives to fossil fuels to help decarbonize metallurgical industries.

Abstract Image

利用生物炭实现冶金和炼钢行业的脱碳:综述
炼铁和炼钢业在制造业中发挥着重要作用,但却产生大量温室气体排放。由于具有碳捕集潜力,生物炭作为冶金过程中煤炭的潜在替代品最近受到了关注。本综述探讨了生物炭在炼钢工业中作为煤炭可持续替代品的潜力。著名的研究工作表明,在炼焦、铁烧结、高炉和电炉等工艺中,以低至 5% 高至 50% 的生物炭替代煤炭是可行且有益的。本综述提供的信息可用于创造可持续的、有竞争力的化石燃料替代品,帮助冶金工业实现脱碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信