Composite Separators with Very High Garnet Content for Solid-State Batteries

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Kevin Vattappara, Dr. Martin Finsterbusch, Prof. Dr. Dina Fattakhova-Rohlfing, Dr. Andriy Kvasha
{"title":"Composite Separators with Very High Garnet Content for Solid-State Batteries","authors":"Kevin Vattappara,&nbsp;Dr. Martin Finsterbusch,&nbsp;Prof. Dr. Dina Fattakhova-Rohlfing,&nbsp;Dr. Andriy Kvasha","doi":"10.1002/celc.202400323","DOIUrl":null,"url":null,"abstract":"<p>Lithium-metal solid-state batteries are attractive as next generation of Li-ion batteries due to higher safety and potentially higher energy density. To improve processability, solid-composite separators combine advantages of inorganic and polymer separators in hybrid structure. We report a systematic approach to fabricate composite separators with high content (90–95 wt %) of ceramic Li-ion conducting Li<sub>6.45</sub>Al<sub>0.05</sub>La<sub>3</sub>Zr<sub>1.6</sub>Ta<sub>0.4</sub>O<sub>12</sub> (LLZO) powder embedded in a polyethylene oxide (PEO)-LiTFSI (20 : 1) matrix and understand factors affecting their properties and performance. Separators with good mechanical flexibility and excellent thermal stability were obtained, by optimizing materials and processing parameters. It was found that PEO molecular weight strongly influences the microstructure and electrochemical properties of the separators. In optimized separator with 90 wt % of LLZO and PEO with Mw 300,000 g/mol, a total ionic conductivity of 1.4×10<sup>−5</sup> S/cm at 60 °C was achieved. The ceramic-rich separator showed excellent long-term cycling stability for more than 460 cycles (1000 h) at 0.1 mA/cm<sup>2</sup> in Li/Li symmetrical cells and achieved a critical current density of 0.25 mA/cm<sup>2</sup>. The separators also enabled initial discharge capacities of more than 160 mAh/g in full cells with Li metal anode and composite solid-state LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> cathode, although rapid capacity fade was observed after 10 cycles in fully solid-state configuration.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400323","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400323","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-metal solid-state batteries are attractive as next generation of Li-ion batteries due to higher safety and potentially higher energy density. To improve processability, solid-composite separators combine advantages of inorganic and polymer separators in hybrid structure. We report a systematic approach to fabricate composite separators with high content (90–95 wt %) of ceramic Li-ion conducting Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) powder embedded in a polyethylene oxide (PEO)-LiTFSI (20 : 1) matrix and understand factors affecting their properties and performance. Separators with good mechanical flexibility and excellent thermal stability were obtained, by optimizing materials and processing parameters. It was found that PEO molecular weight strongly influences the microstructure and electrochemical properties of the separators. In optimized separator with 90 wt % of LLZO and PEO with Mw 300,000 g/mol, a total ionic conductivity of 1.4×10−5 S/cm at 60 °C was achieved. The ceramic-rich separator showed excellent long-term cycling stability for more than 460 cycles (1000 h) at 0.1 mA/cm2 in Li/Li symmetrical cells and achieved a critical current density of 0.25 mA/cm2. The separators also enabled initial discharge capacities of more than 160 mAh/g in full cells with Li metal anode and composite solid-state LiNi0.6Co0.2Mn0.2O2 cathode, although rapid capacity fade was observed after 10 cycles in fully solid-state configuration.

Abstract Image

用于固态电池的石榴石含量极高的复合分离器
锂金属固态电池具有更高的安全性和潜在的更高能量密度,是下一代锂离子电池的理想选择。为了提高加工性能,固态复合隔膜在混合结构中结合了无机隔膜和聚合物隔膜的优点。我们报告了一种系统方法,用于制造高含量(90-95 wt %)锂离子导电陶瓷 Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) 粉末嵌入聚氧化乙烯 (PEO) -LiTFSI (20 : 1) 基质中的复合隔膜,并了解影响其特性和性能的因素。通过优化材料和加工参数,获得了具有良好机械柔韧性和优异热稳定性的分离器。研究发现,PEO 分子量对分离器的微观结构和电化学性能有很大影响。在含有 90 wt % LLZO 和 Mw 为 300,000 g/mol 的 PEO 的优化分离器中,60 °C 时的总离子电导率达到了 1.4×10-5 S/cm。在锂/锂对称电池中,富陶瓷隔膜在 0.1 mA/cm2 的条件下循环超过 460 次(1000 小时),显示出优异的长期循环稳定性,临界电流密度达到 0.25 mA/cm2。在采用锂金属阳极和复合固态 LiNi0.6Co0.2Mn0.2O2 阴极的全电池中,隔膜还能使初始放电容量超过 160 mAh/g,但在全固态配置中,10 个循环后容量迅速衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信