Microenvironment Manipulation Strategies for Acidic CO2 Electrolysis

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Geng Li, Yong Liu, Tanglue Feng, Ruquan Ye
{"title":"Microenvironment Manipulation Strategies for Acidic CO2 Electrolysis","authors":"Geng Li,&nbsp;Yong Liu,&nbsp;Tanglue Feng,&nbsp;Ruquan Ye","doi":"10.1002/celc.202400475","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) has gained significant attention due to its potential to reduce carbon emissions and produce valuable fuels and chemicals. CO<sub>2</sub>RR is typically carried out in neutral or alkaline conditions, while challenges such as the carbon crossover and salt precipitate can hinder the practical application. Conducting CO<sub>2</sub>RR in acidic media presents a promising method to address these issues, although it faces the problem of low efficiency and poor catalysis stability. Regulating the interface/surface microenvironment near the catalysts is crucial to minimize the competitive hydrogen evolution reaction and enhance CO<sub>2</sub>RR activity and long-term stability. This review outlines recent advancements in acidic CO<sub>2</sub>RR, emphasizing various microenvironment engineering strategies for optimizing the CO<sub>2</sub>RR kinetics including electrolyte composition manipulation, catalyst design, electrode modification and cell configuration optimization. Additionally, the review addresses challenges into developing practical and cost-effective CO<sub>2</sub>RR systems.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400475","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400475","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of CO2 (CO2RR) has gained significant attention due to its potential to reduce carbon emissions and produce valuable fuels and chemicals. CO2RR is typically carried out in neutral or alkaline conditions, while challenges such as the carbon crossover and salt precipitate can hinder the practical application. Conducting CO2RR in acidic media presents a promising method to address these issues, although it faces the problem of low efficiency and poor catalysis stability. Regulating the interface/surface microenvironment near the catalysts is crucial to minimize the competitive hydrogen evolution reaction and enhance CO2RR activity and long-term stability. This review outlines recent advancements in acidic CO2RR, emphasizing various microenvironment engineering strategies for optimizing the CO2RR kinetics including electrolyte composition manipulation, catalyst design, electrode modification and cell configuration optimization. Additionally, the review addresses challenges into developing practical and cost-effective CO2RR systems.

Abstract Image

酸性二氧化碳电解的微环境控制策略
二氧化碳的电化学还原(CO2RR)因其减少碳排放、生产有价值燃料和化学品的潜力而备受关注。CO2RR 通常在中性或碱性条件下进行,而碳交叉和盐沉淀等难题会阻碍其实际应用。在酸性介质中进行 CO2RR 是解决这些问题的一种可行方法,但它也面临着效率低和催化稳定性差的问题。调节催化剂附近的界面/表面微环境对于减少竞争性氢进化反应、提高 CO2RR 活性和长期稳定性至关重要。本综述概述了酸性 CO2RR 的最新进展,强调了优化 CO2RR 动力学的各种微环境工程策略,包括电解质成分处理、催化剂设计、电极改性和电池配置优化。此外,该综述还探讨了开发实用且具有成本效益的 CO2RR 系统所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信