Performance Effects of Different Shutdown Methods on Three Electrode Materials for Electromethanogenesis

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Nils Rohbohm, Maren Lang, Johannes Erben, Kurt Gemeinhardt, Nitant Patel, Ivan K. Ilic, Doris Hafenbradl, Jose Rodrigo Quejigo, Largus T. Angenent
{"title":"Performance Effects of Different Shutdown Methods on Three Electrode Materials for Electromethanogenesis","authors":"Nils Rohbohm,&nbsp;Maren Lang,&nbsp;Johannes Erben,&nbsp;Kurt Gemeinhardt,&nbsp;Nitant Patel,&nbsp;Ivan K. Ilic,&nbsp;Doris Hafenbradl,&nbsp;Jose Rodrigo Quejigo,&nbsp;Largus T. Angenent","doi":"10.1002/celc.202400372","DOIUrl":null,"url":null,"abstract":"<p>Industrial applications of microbial electrochemical systems will require regular maintenance shutdowns, involving inspections and component replacements to extend the lifespan of the system. Here, we examined the impact of such shutdowns on the performance of three electrode materials (<i>i. e</i>., platinized titanium, graphite, and nickel) as cathodes in a microbial electrochemical system that would be used for electromethanogenesis in power-to-gas applications. We focused on methane (CH<sub>4</sub>) production from hydrogen (H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) using <i>Methanothermobacter thermautotrophicus</i>. We showed that the platinized titanium cathode resulted in high volumetric CH<sub>4</sub> production rates and Coulombic efficiencies. Using a graphite cathode would be more cost-effective than using the platinized titanium cathode in microbial electrochemical systems, but showed an inferior performance. The microbial electrochemical system with the nickel cathode showed improvements compared to the graphite cathode. Additionally, this system with a nickel cathode demonstrated the fastest recovery during a shutdown experiment compared to the other two cathodes. Fluctuations in pH and nickel concentrations in the catholyte during power interruptions affected CH<sub>4</sub> production recovery in the system with the nickel cathode. This research enhances understanding of the integration of biological and electrochemical processes in microbial electrochemical systems, providing insights into electrode selection and operating strategies for effective and sustainable CH<sub>4</sub> production.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400372","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400372","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial applications of microbial electrochemical systems will require regular maintenance shutdowns, involving inspections and component replacements to extend the lifespan of the system. Here, we examined the impact of such shutdowns on the performance of three electrode materials (i. e., platinized titanium, graphite, and nickel) as cathodes in a microbial electrochemical system that would be used for electromethanogenesis in power-to-gas applications. We focused on methane (CH4) production from hydrogen (H2) and carbon dioxide (CO2) using Methanothermobacter thermautotrophicus. We showed that the platinized titanium cathode resulted in high volumetric CH4 production rates and Coulombic efficiencies. Using a graphite cathode would be more cost-effective than using the platinized titanium cathode in microbial electrochemical systems, but showed an inferior performance. The microbial electrochemical system with the nickel cathode showed improvements compared to the graphite cathode. Additionally, this system with a nickel cathode demonstrated the fastest recovery during a shutdown experiment compared to the other two cathodes. Fluctuations in pH and nickel concentrations in the catholyte during power interruptions affected CH4 production recovery in the system with the nickel cathode. This research enhances understanding of the integration of biological and electrochemical processes in microbial electrochemical systems, providing insights into electrode selection and operating strategies for effective and sustainable CH4 production.

Abstract Image

不同关机方法对三种电解甲烷电极材料性能的影响
微生物电化学系统的工业应用需要定期停机维护,包括检查和更换部件,以延长系统的使用寿命。在此,我们研究了停机对作为阴极的三种电极材料(即铂化钛、石墨和镍)性能的影响。我们的研究重点是利用热自养甲烷杆菌从氢气(H2)和二氧化碳(CO2)中产生甲烷(CH4)。我们的研究表明,铂化钛阴极具有较高的 CH4 体积生产率和库仑效率。在微生物电化学系统中使用石墨阴极比使用铂化钛阴极更具成本效益,但性能较差。与石墨阴极相比,使用镍阴极的微生物电化学系统的性能有所提高。此外,与其他两种阴极相比,这种使用镍阴极的系统在停机实验中的恢复速度最快。在断电期间,阴极溶液中 pH 值和镍浓度的波动影响了镍阴极系统的 CH4 产量恢复。这项研究加深了人们对微生物电化学系统中生物和电化学过程整合的理解,为有效和可持续生产 CH4 的电极选择和操作策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信