{"title":"Environmental Controls on Deep and Overshooting Convection Over the Contiguous U.S.","authors":"Kenneth P. Bowman, Anita D. Rapp","doi":"10.1029/2024JD041841","DOIUrl":null,"url":null,"abstract":"<p>During the summer season, deep convection over the central United States has a significant impact on the dynamics and composition of the upper troposphere and lower stratosphere (UTLS). These storms transport tropospheric air containing trace gases, ice particles, and aerosols into the UTLS, which can affect chemical and radiative processes over a large region. Because overshooting storms necessarily have strong updrafts, there is a marked correlation between overshooting and the occurrence of severe weather at the surface. Heat released by these storms also helps to drive the North American Monsoon Anticyclone (NAMA) in the UTLS, which partially confines air injected into the stratosphere by overshooting storms. In support of the Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) project, this study is a climatological analysis of the environmental factors that affect the occurrence of deep and overshooting storms. Using hourly analyses of overshooting storms based on GridRad radar data and ERA5 reanalyzes, we focus on the roles of convective available potential energy (CAPE), convective inhibition (CIN), jet location, and other relevant dynamical and thermodynamic variables. The results show that northward intrusion of airmasses containing moist high CAPE air from the Gulf of Mexico into the central plains plays a major role in producing the conditions necessary for overshooting storms with other factors playing secondary roles.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 22","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041841","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041841","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During the summer season, deep convection over the central United States has a significant impact on the dynamics and composition of the upper troposphere and lower stratosphere (UTLS). These storms transport tropospheric air containing trace gases, ice particles, and aerosols into the UTLS, which can affect chemical and radiative processes over a large region. Because overshooting storms necessarily have strong updrafts, there is a marked correlation between overshooting and the occurrence of severe weather at the surface. Heat released by these storms also helps to drive the North American Monsoon Anticyclone (NAMA) in the UTLS, which partially confines air injected into the stratosphere by overshooting storms. In support of the Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) project, this study is a climatological analysis of the environmental factors that affect the occurrence of deep and overshooting storms. Using hourly analyses of overshooting storms based on GridRad radar data and ERA5 reanalyzes, we focus on the roles of convective available potential energy (CAPE), convective inhibition (CIN), jet location, and other relevant dynamical and thermodynamic variables. The results show that northward intrusion of airmasses containing moist high CAPE air from the Gulf of Mexico into the central plains plays a major role in producing the conditions necessary for overshooting storms with other factors playing secondary roles.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.