Angelo Aloisio, Dag Pasquale Pasca, Blaž Kurent, Roberto Tomasi
{"title":"Long-term continuous dynamic monitoring of an eight-story CLT building","authors":"Angelo Aloisio, Dag Pasquale Pasca, Blaž Kurent, Roberto Tomasi","doi":"10.1016/j.ymssp.2024.112094","DOIUrl":null,"url":null,"abstract":"This paper presents the continuous monitoring of an eight-story cross-laminated timber (CLT) building. The monitoring process includes daily acceleration measurements at the rooftop, along with external temperature, humidity, and wind velocity data. Additionally, moisture content (MC) of timber at various locations in the internal and perimeter walls is measured. The extraction of modal parameters is automated and is based on the Stochastic Subspace Identification method. This research primarily evaluates how environmental factors, particularly temperature, wood MC, snow height, and wind velocity, affect the building’s modal parameters and vibrational response. The data has been found to significantly correlate with temperature, wood MC, and snow level. Subsequently, the authors performed a Bayesian model updating of the building to estimate the relationship between the shear modulus of CLT and the MC. This analysis has led to an empirical formula for predicting the stiffness properties of CLT walls based on wood MC derived from long-term monitoring of a timber building. To the authors’ knowledge, it is the first empirical expression relating a mechanical property of timber and MC, indirectly estimated from ambient vibration data.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"64 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112094","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the continuous monitoring of an eight-story cross-laminated timber (CLT) building. The monitoring process includes daily acceleration measurements at the rooftop, along with external temperature, humidity, and wind velocity data. Additionally, moisture content (MC) of timber at various locations in the internal and perimeter walls is measured. The extraction of modal parameters is automated and is based on the Stochastic Subspace Identification method. This research primarily evaluates how environmental factors, particularly temperature, wood MC, snow height, and wind velocity, affect the building’s modal parameters and vibrational response. The data has been found to significantly correlate with temperature, wood MC, and snow level. Subsequently, the authors performed a Bayesian model updating of the building to estimate the relationship between the shear modulus of CLT and the MC. This analysis has led to an empirical formula for predicting the stiffness properties of CLT walls based on wood MC derived from long-term monitoring of a timber building. To the authors’ knowledge, it is the first empirical expression relating a mechanical property of timber and MC, indirectly estimated from ambient vibration data.
本文介绍了对一座八层交叉层压木材(CLT)建筑的连续监测。监测过程包括每天在屋顶测量加速度,以及外部温度、湿度和风速数据。此外,还测量了内墙和外墙不同位置的木材含水率(MC)。模态参数的提取是基于随机子空间识别方法自动进行的。这项研究主要评估环境因素,尤其是温度、木材 MC、雪高和风速如何影响建筑物的模态参数和振动响应。研究发现,数据与温度、木材 MC 和积雪高度密切相关。随后,作者对建筑物进行了贝叶斯模型更新,以估算 CLT 的剪切模量与 MC 之间的关系。这一分析得出了一个经验公式,可根据对木结构建筑的长期监测得出的木材 MC 预测 CLT 墙体的刚度特性。据作者所知,这是首个通过环境振动数据间接估算出的木材机械性能与 MC 之间关系的经验表达式。
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems