Generalized synchroextracting transform: Algorithm and applications

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wenjie Bao, Songyong Liu, Zhen Liu, Fucai Li
{"title":"Generalized synchroextracting transform: Algorithm and applications","authors":"Wenjie Bao, Songyong Liu, Zhen Liu, Fucai Li","doi":"10.1016/j.ymssp.2024.112116","DOIUrl":null,"url":null,"abstract":"Time-frequency (TF) rearrangement methods represented by synchrosqueezing transform (SST) and synchroextracting transform (SET) have recently been considered efficient tools for obtaining time-varying features of nonstationary signals. However, so far improving concentration and accuracy is still an open problem, especially for the signal with strongly time-varying instantaneous frequency (IF), due to the fact that they cannot achieve an accurate and generalized IF estimation. In order to address this problem, we introduce a new TF analysis method termed as generalized synchroextracting transform (GSET) by constructing a general signal model. Our first contribution in this study is proposing a new computational framework to derive the generalized explicit formula of <mml:math altimg=\"si10.svg\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order IF estimation, which can realize the programming of any order IF. By extracting the energy of the TF representation (TFR) on the estimated IF, a more concentrated and accurate TFR can be obtained. Our second contribution is giving a more accurate signal reconstruction method of the TFR from a new perspective. It solves the problem that the reconstruction method of the synchroextracting transform cannot be extended to the <mml:math altimg=\"si10.svg\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order. Numerical analysis of multicomponent simulated signal demonstrates that the GSET can effectively improve the TF readability of strongly time-varying signal and accurately reconstruct the signal from the TFR. Moreover, experiment and application results verify that the proposed method can be used for fault diagnosis of rotating machinery.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"43 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112116","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Time-frequency (TF) rearrangement methods represented by synchrosqueezing transform (SST) and synchroextracting transform (SET) have recently been considered efficient tools for obtaining time-varying features of nonstationary signals. However, so far improving concentration and accuracy is still an open problem, especially for the signal with strongly time-varying instantaneous frequency (IF), due to the fact that they cannot achieve an accurate and generalized IF estimation. In order to address this problem, we introduce a new TF analysis method termed as generalized synchroextracting transform (GSET) by constructing a general signal model. Our first contribution in this study is proposing a new computational framework to derive the generalized explicit formula of Nth-order IF estimation, which can realize the programming of any order IF. By extracting the energy of the TF representation (TFR) on the estimated IF, a more concentrated and accurate TFR can be obtained. Our second contribution is giving a more accurate signal reconstruction method of the TFR from a new perspective. It solves the problem that the reconstruction method of the synchroextracting transform cannot be extended to the Nth-order. Numerical analysis of multicomponent simulated signal demonstrates that the GSET can effectively improve the TF readability of strongly time-varying signal and accurately reconstruct the signal from the TFR. Moreover, experiment and application results verify that the proposed method can be used for fault diagnosis of rotating machinery.
广义同步提取变换:算法与应用
以同步萃取变换(SST)和同步提取变换(SET)为代表的时频(TF)重排方法最近被认为是获取非稳态信号时变特征的有效工具。然而,到目前为止,提高集中度和准确度仍是一个未决问题,尤其是对于具有强烈时变瞬时频率(IF)的信号,因为它们无法实现准确和通用的 IF 估计。为了解决这个问题,我们通过构建一个通用信号模型,引入了一种新的 TF 分析方法,称为广义同步提取变换(GSET)。我们在这项研究中的第一个贡献是提出了一个新的计算框架,以推导出 N 阶中频估计的广义显式公式,它可以实现任意阶中频的编程。通过提取估计中频上的 TF 表示(TFR)能量,可以获得更集中、更精确的 TFR。我们的第二个贡献是从新的角度给出了一种更精确的 TFR 信号重构方法。它解决了同步提取变换的重构方法无法扩展到 N 阶的问题。对多分量模拟信号的数值分析表明,GSET 能有效提高强时变信号的 TF 可读性,并能从 TFR 准确地重建信号。此外,实验和应用结果验证了所提出的方法可用于旋转机械的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信