{"title":"A novel microwave-based dynamic measurement method for blade tip clearance through nonlinear I/Q imbalance correction","authors":"Saisai Chen, Tong Zhou, Wei Fan, Yuyong Xiong","doi":"10.1016/j.ymssp.2024.112138","DOIUrl":null,"url":null,"abstract":"Blade is the core working components of an aero-engine, and its blade tip clearance (BTC) exerts a direct influence on the efficiency and safety of the engine. Aiming to extract the BTC region from the echo signal, a novel microwave-based dynamic measurement system through nonlinear I/Q imbalance correction is proposed. Firstly, to achieve accurately correction of the sensor under non-linear amplitude attenuation, a new correction method is proposed to map the amplitude decay attenuation into the imbalance parameters distribution. Secondly, to effectively localize the extraction BTC region, the Amplitude-phase Half Wave Extraction (APH) is proposed, which utilizes squared I/Q amplitude information to determine the BTC position and extract clearance information. Finally, in comparison to existing methods, the proposed algorithm exhibits excellent performance in signal correction under non-linear amplitude attenuation and achieves high-accurate BTC extraction. Experimental studies show a mean absolute error below 2 μm and a repeatability mean error of 0.154 μm for a BTC variation of 0.17 mm.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112138","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blade is the core working components of an aero-engine, and its blade tip clearance (BTC) exerts a direct influence on the efficiency and safety of the engine. Aiming to extract the BTC region from the echo signal, a novel microwave-based dynamic measurement system through nonlinear I/Q imbalance correction is proposed. Firstly, to achieve accurately correction of the sensor under non-linear amplitude attenuation, a new correction method is proposed to map the amplitude decay attenuation into the imbalance parameters distribution. Secondly, to effectively localize the extraction BTC region, the Amplitude-phase Half Wave Extraction (APH) is proposed, which utilizes squared I/Q amplitude information to determine the BTC position and extract clearance information. Finally, in comparison to existing methods, the proposed algorithm exhibits excellent performance in signal correction under non-linear amplitude attenuation and achieves high-accurate BTC extraction. Experimental studies show a mean absolute error below 2 μm and a repeatability mean error of 0.154 μm for a BTC variation of 0.17 mm.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems