Alexandr Marunchenko, Jitendra Kumar, Dmitry Tatarinov, Anatoly P. Pushkarev, Yana Vaynzof, Ivan G. Scheblykin
{"title":"Hidden Photoexcitations Probed by Multipulse Photoluminescence","authors":"Alexandr Marunchenko, Jitendra Kumar, Dmitry Tatarinov, Anatoly P. Pushkarev, Yana Vaynzof, Ivan G. Scheblykin","doi":"10.1021/acsenergylett.4c02404","DOIUrl":null,"url":null,"abstract":"Time-resolved photoluminescence is a validated method for tracking the photoexcited carrier dynamics in luminescent materials. This technique probes the photoluminescence decays upon a periodic excitation by short laser pulses. Herein, we show that this approach cannot directly detect hidden photoexcitations with much slower dynamics than the photoluminescence decay. We demonstrate a new method based on a multipulse excitation scheme that enables an unambiguous detection and an easily interpreted tracking of these hidden species. The multipulse excitation consists of a single pulse (Read) followed by a burst of many closely separated pulses (Write) and finally another single pulse (Read). To illustrate the efficacy of the Read-Write-Read excitation scheme, we apply it to metal halide perovskites to directly visualize carrier trapping, extract the concentration of trapped charges, and determine the rate constant of trap depopulation. The developed approach allows studying performance-limiting processes in energy devices using a versatile, highly applicable all-optical method.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"225 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02404","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Time-resolved photoluminescence is a validated method for tracking the photoexcited carrier dynamics in luminescent materials. This technique probes the photoluminescence decays upon a periodic excitation by short laser pulses. Herein, we show that this approach cannot directly detect hidden photoexcitations with much slower dynamics than the photoluminescence decay. We demonstrate a new method based on a multipulse excitation scheme that enables an unambiguous detection and an easily interpreted tracking of these hidden species. The multipulse excitation consists of a single pulse (Read) followed by a burst of many closely separated pulses (Write) and finally another single pulse (Read). To illustrate the efficacy of the Read-Write-Read excitation scheme, we apply it to metal halide perovskites to directly visualize carrier trapping, extract the concentration of trapped charges, and determine the rate constant of trap depopulation. The developed approach allows studying performance-limiting processes in energy devices using a versatile, highly applicable all-optical method.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.