Resistance gene enrichment sequencing for NLR genes for Phytophthora sojae in selected soybean plant introductions and differentials with putative novel and known Rps genes
Brian Hodge, Amine Batnini, Carlos Bolaños-Carriel, Kyujung Van, M. A. Saghai Maroof, Leah McHale, Anne E. Dorrance
{"title":"Resistance gene enrichment sequencing for NLR genes for Phytophthora sojae in selected soybean plant introductions and differentials with putative novel and known Rps genes","authors":"Brian Hodge, Amine Batnini, Carlos Bolaños-Carriel, Kyujung Van, M. A. Saghai Maroof, Leah McHale, Anne E. Dorrance","doi":"10.1002/csc2.21413","DOIUrl":null,"url":null,"abstract":"Numerous sources of putative novel resistance genes toward <i>Phytophthora sojae</i> (<i>Rps</i> genes) have been identified and loci mapped in soybean (<i>Glycine max</i> L. Merr.) but cloning has remained elusive. We utilized resistance gene enrichment sequencing (RenSeq) to identify the putative resistance genes in 20 plant introductions (PIs) and differentials of the cultivar Williams with <i>rps</i>, <i>Rps1c</i>, <i>Rps3a</i>, and <i>Rps8</i>. The DNA from these genotypes was enriched and sequenced using more than 25,000 80 nt baits designed to nucleotide-binding leucine-rich repeat (NLR) encoding sequences. Overall, there were greater numbers of variants in the NLR-encoding genes in <i>Rps</i> loci on chromosomes (Chrs) 3, 7, 13, and 18 for the 20 PIs as compared to the Williams differentials for <i>rps</i>, <i>Rps1c</i>, <i>Rps1k</i>, <i>Rps3a</i>, and <i>Rps8</i>. Genes encoding <i>Rps1c</i>, <i>Rps3a</i>, and <i>Rps8</i> were proposed based on sequence differences among the differentials. Among the 20 PIs, there may be additional alleles on Chrs 3, 13, and 18, and PI399079 may have two new alleles at Chrs 3 and 7 loci. A unique NLR on Chr 8 was identified in PI200553. New alleles were also identified on Chrs 3 and 18 when the PI and resistant bulks were compared to susceptible recombinant inbred lines. This study demonstrates the utility of RenSeq as an efficient method to identify and predict specific novel NLR genes in landrace soybean germplasm, which confer resistance to <i>P. sojae</i> and obtain gene-specific markers to facilitate their introgression into modern cultivars.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21413","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous sources of putative novel resistance genes toward Phytophthora sojae (Rps genes) have been identified and loci mapped in soybean (Glycine max L. Merr.) but cloning has remained elusive. We utilized resistance gene enrichment sequencing (RenSeq) to identify the putative resistance genes in 20 plant introductions (PIs) and differentials of the cultivar Williams with rps, Rps1c, Rps3a, and Rps8. The DNA from these genotypes was enriched and sequenced using more than 25,000 80 nt baits designed to nucleotide-binding leucine-rich repeat (NLR) encoding sequences. Overall, there were greater numbers of variants in the NLR-encoding genes in Rps loci on chromosomes (Chrs) 3, 7, 13, and 18 for the 20 PIs as compared to the Williams differentials for rps, Rps1c, Rps1k, Rps3a, and Rps8. Genes encoding Rps1c, Rps3a, and Rps8 were proposed based on sequence differences among the differentials. Among the 20 PIs, there may be additional alleles on Chrs 3, 13, and 18, and PI399079 may have two new alleles at Chrs 3 and 7 loci. A unique NLR on Chr 8 was identified in PI200553. New alleles were also identified on Chrs 3 and 18 when the PI and resistant bulks were compared to susceptible recombinant inbred lines. This study demonstrates the utility of RenSeq as an efficient method to identify and predict specific novel NLR genes in landrace soybean germplasm, which confer resistance to P. sojae and obtain gene-specific markers to facilitate their introgression into modern cultivars.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.