Chang Qian , Qianqian Wang , Benjamin S. Gilfedder , Sven Frei , Jieyu Yu , Giri R. Kattel , Zhi-Guo Yu
{"title":"Seasonal dynamics of groundwater discharge: Unveiling the complex control over reservoir greenhouse gas emissions","authors":"Chang Qian , Qianqian Wang , Benjamin S. Gilfedder , Sven Frei , Jieyu Yu , Giri R. Kattel , Zhi-Guo Yu","doi":"10.1016/j.watres.2024.122801","DOIUrl":null,"url":null,"abstract":"<div><div>The pronounced topographical differences, giving rise to numerous water bodies, also endow these formations with substantial hydraulic gradients, leading to pronounced groundwater discharge within their low-lying, natural reservoir settings. However, the dynamics of groundwater discharge in reservoirs and their impact on greenhouse gas (GHG) production and emission under different conditions remain unclear. This study focuses on a reservoir in southeastern China, where we conducted seasonal field observations alongside microcosm incubation experiments to elucidate the relationship between greenhouse gas emissions and groundwater discharge. Based on the radon (<sup>222</sup>Rn) mass balance model, groundwater discharge rates were estimated to be 2.14 ± 0.49 cm <em>d</em><sup>−1</sup> in autumn, 4.04 ± 2.09 cm <em>d</em><sup>−1</sup> in winter, 2.55 ± 1.32 cm <em>d</em><sup>−1</sup> in spring, and 2.61 ± 1.93 cm <em>d</em><sup>−1</sup> in summer. Groundwater discharge contributes on average to 31.23 % of CH<sub>4</sub>, 35.65 % of CO<sub>2</sub>, and 11.26 % of N<sub>2</sub>O emissions across all seasons in the reservoir. Groundwater primarily influences GHG emissions by directly inputting carbon and nitrogen, as well as by altering aquatic chemical conditions and the environment of dissolved organic matter (DOM), exerting significant effects particularly during spring and autumn seasons. Especially, in winter, higher groundwater discharge rates influence microbial activity and environmental conditions in the water body, including the C/N ratio, which somewhat reduces its enhancement of greenhouse gas emissions. This study provides an in-depth exploration of greenhouse gas emissions from reservoirs and examines the impact of groundwater on these emissions, aiming to reduce uncertainties in understanding greenhouse gas emission mechanisms and carbon and nitrogen cycling.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"269 ","pages":"Article 122801"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424017007","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pronounced topographical differences, giving rise to numerous water bodies, also endow these formations with substantial hydraulic gradients, leading to pronounced groundwater discharge within their low-lying, natural reservoir settings. However, the dynamics of groundwater discharge in reservoirs and their impact on greenhouse gas (GHG) production and emission under different conditions remain unclear. This study focuses on a reservoir in southeastern China, where we conducted seasonal field observations alongside microcosm incubation experiments to elucidate the relationship between greenhouse gas emissions and groundwater discharge. Based on the radon (222Rn) mass balance model, groundwater discharge rates were estimated to be 2.14 ± 0.49 cm d−1 in autumn, 4.04 ± 2.09 cm d−1 in winter, 2.55 ± 1.32 cm d−1 in spring, and 2.61 ± 1.93 cm d−1 in summer. Groundwater discharge contributes on average to 31.23 % of CH4, 35.65 % of CO2, and 11.26 % of N2O emissions across all seasons in the reservoir. Groundwater primarily influences GHG emissions by directly inputting carbon and nitrogen, as well as by altering aquatic chemical conditions and the environment of dissolved organic matter (DOM), exerting significant effects particularly during spring and autumn seasons. Especially, in winter, higher groundwater discharge rates influence microbial activity and environmental conditions in the water body, including the C/N ratio, which somewhat reduces its enhancement of greenhouse gas emissions. This study provides an in-depth exploration of greenhouse gas emissions from reservoirs and examines the impact of groundwater on these emissions, aiming to reduce uncertainties in understanding greenhouse gas emission mechanisms and carbon and nitrogen cycling.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.