Artificial mechano-nociceptive system based on transparent ITO/AlN/ITO memristor nociceptor neuron

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Caiyang Ye, Yimeng Xu, Ziyi Dai, Zede Zhu, Chao Li, Kai Qian
{"title":"Artificial mechano-nociceptive system based on transparent ITO/AlN/ITO memristor nociceptor neuron","authors":"Caiyang Ye, Yimeng Xu, Ziyi Dai, Zede Zhu, Chao Li, Kai Qian","doi":"10.1063/5.0235758","DOIUrl":null,"url":null,"abstract":"Artificial nociceptors demonstrate significant potential in emerging fields such as intelligent prosthetics, humanoid robotics, and electronic skin, capable of transducing external noxious stimuli to the central nervous system. Unlike common sensory neurons, nociceptors exhibit unique characteristics, including “no adaptation,” “relaxation,” “threshold firing,” and “sensitization of allodynia/hyperalgesia.” This study presents a forming-free volatile transparent ITO/AlN/ITO memristor that emulates biological nociceptor behaviors. Leveraging this artificial nociceptor, an artificial mechano-nociceptive system is developed by integrating the ITO/AlN/ITO memristor into a piezoelectric force sensor system for pain sensing and noxious stimuli warning. This research contributes to the advancement of human cognitive capability emulation and artificial intelligence systems, particularly in the domain of pain perception and response.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"32 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235758","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial nociceptors demonstrate significant potential in emerging fields such as intelligent prosthetics, humanoid robotics, and electronic skin, capable of transducing external noxious stimuli to the central nervous system. Unlike common sensory neurons, nociceptors exhibit unique characteristics, including “no adaptation,” “relaxation,” “threshold firing,” and “sensitization of allodynia/hyperalgesia.” This study presents a forming-free volatile transparent ITO/AlN/ITO memristor that emulates biological nociceptor behaviors. Leveraging this artificial nociceptor, an artificial mechano-nociceptive system is developed by integrating the ITO/AlN/ITO memristor into a piezoelectric force sensor system for pain sensing and noxious stimuli warning. This research contributes to the advancement of human cognitive capability emulation and artificial intelligence systems, particularly in the domain of pain perception and response.
基于透明 ITO/AlN/ITO忆阻器痛觉神经元的人工机械痛觉系统
人造痛觉感受器在智能假肢、仿人机器人和电子皮肤等新兴领域具有巨大潜力,能够将外部有害刺激传导至中枢神经系统。与普通感觉神经元不同,痛觉感受器表现出独特的特征,包括 "无适应"、"松弛"、"阈值点燃 "和 "异感/过痛敏感化"。本研究提出了一种无成型挥发性透明 ITO/AlN/ITO 记忆晶闸管,可模拟生物痛觉感受器的行为。利用这种人工痛觉感受器,将 ITO/AlN/ITO 记忆晶粒集成到压电力传感器系统中,开发出了一种人工机械痛觉系统,用于痛觉感应和有害刺激预警。这项研究有助于推动人类认知能力仿真和人工智能系统的发展,特别是在疼痛感知和反应领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信