{"title":"Nanoparticles and quantum dots as emerging optical sensing platforms for Ni(II) detection: Recent approaches and perspectives","authors":"Sudhanshu Naithani , Heena , Pooja Sharma , Samar Layek , Franck Thetiot , Tapas Goswami , Sushil Kumar","doi":"10.1016/j.ccr.2024.216331","DOIUrl":null,"url":null,"abstract":"<div><div>Over the preceding years, nickel (Ni) and its compounds have been increasingly employed in various aspects of human social life, metallurgical/industrial manufactures, healthcare and chemical processes. Although Ni is considered as an essential trace element in biological system, excessive intake or metabolic deficiency of Ni<sup>2+</sup> ions may cause detrimental health effects to the living organisms. Therefore, a facile and accurate detection of Ni<sup>2+</sup>, especially in environment and biological settings, is of huge significance. As an efficient detection method, assaying Ni<sup>2+</sup> using optical (colorimetric and/or fluorogenic) sensors has experienced quite a vigorous growth period with large number of excellent researches. Nanomaterial-based optical sensors including metal nanoparticles (MNPs), quantum dots (QDs), and carbon dots (CDs) offer distinct advantages over conventional small-molecule organic and inorganic sensors. This study mainly provides an overview of the recent advancements and challenges related to the design strategies of various optical nanosensors to selectively detect Ni<sup>2+</sup> ion. Emphasis has also been placed on comparing the sensing performance of various nanosensors along with exploring future perspectives.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"524 ","pages":"Article 216331"},"PeriodicalIF":20.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524006775","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Over the preceding years, nickel (Ni) and its compounds have been increasingly employed in various aspects of human social life, metallurgical/industrial manufactures, healthcare and chemical processes. Although Ni is considered as an essential trace element in biological system, excessive intake or metabolic deficiency of Ni2+ ions may cause detrimental health effects to the living organisms. Therefore, a facile and accurate detection of Ni2+, especially in environment and biological settings, is of huge significance. As an efficient detection method, assaying Ni2+ using optical (colorimetric and/or fluorogenic) sensors has experienced quite a vigorous growth period with large number of excellent researches. Nanomaterial-based optical sensors including metal nanoparticles (MNPs), quantum dots (QDs), and carbon dots (CDs) offer distinct advantages over conventional small-molecule organic and inorganic sensors. This study mainly provides an overview of the recent advancements and challenges related to the design strategies of various optical nanosensors to selectively detect Ni2+ ion. Emphasis has also been placed on comparing the sensing performance of various nanosensors along with exploring future perspectives.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.