Quasi-phase-matching enabled by van der Waals stacking

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yilin Tang, Kabilan Sripathy, Hao Qin, Zhuoyuan Lu, Giovanni Guccione, Jiri Janousek, Yi Zhu, Md Mehedi Hasan, Yoshihiro Iwasa, Ping Koy Lam, Yuerui Lu
{"title":"Quasi-phase-matching enabled by van der Waals stacking","authors":"Yilin Tang, Kabilan Sripathy, Hao Qin, Zhuoyuan Lu, Giovanni Guccione, Jiri Janousek, Yi Zhu, Md Mehedi Hasan, Yoshihiro Iwasa, Ping Koy Lam, Yuerui Lu","doi":"10.1038/s41467-024-53472-2","DOIUrl":null,"url":null,"abstract":"<p>Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS<sub>2</sub>), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS<sub>2</sub> layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS<sub>2</sub> homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS<sub>2</sub> van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53472-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS2), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS2 layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS2 homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS2 van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology.

Abstract Image

范德瓦尔斯堆积实现准相位匹配
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信