Yilin Tang, Kabilan Sripathy, Hao Qin, Zhuoyuan Lu, Giovanni Guccione, Jiri Janousek, Yi Zhu, Md Mehedi Hasan, Yoshihiro Iwasa, Ping Koy Lam, Yuerui Lu
{"title":"Quasi-phase-matching enabled by van der Waals stacking","authors":"Yilin Tang, Kabilan Sripathy, Hao Qin, Zhuoyuan Lu, Giovanni Guccione, Jiri Janousek, Yi Zhu, Md Mehedi Hasan, Yoshihiro Iwasa, Ping Koy Lam, Yuerui Lu","doi":"10.1038/s41467-024-53472-2","DOIUrl":null,"url":null,"abstract":"<p>Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS<sub>2</sub>), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS<sub>2</sub> layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS<sub>2</sub> homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS<sub>2</sub> van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53472-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS2), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS2 layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS2 homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS2 van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.