Regional ice flow piracy following the collapse of Midgaard Glacier in Southeast Greenland

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Flora Huiban, Romain Millan, Kristian Kjellerup Kjeldsen, Camilla S. Andresen, Mads Dømgaard, Amaury Dehecq, Stephen Brunt, Shfaqat Abbas Khan, Jérémie Mouginot, Anders Anker Bjørk
{"title":"Regional ice flow piracy following the collapse of Midgaard Glacier in Southeast Greenland","authors":"Flora Huiban, Romain Millan, Kristian Kjellerup Kjeldsen, Camilla S. Andresen, Mads Dømgaard, Amaury Dehecq, Stephen Brunt, Shfaqat Abbas Khan, Jérémie Mouginot, Anders Anker Bjørk","doi":"10.1038/s41467-024-54045-z","DOIUrl":null,"url":null,"abstract":"<p>Southeast Greenland contributes significantly to global sea level rise, with mass loss having increased by about 600% over the past 30 years due to enhanced melt and dynamic instabilities of marine-terminating glaciers. Accurate modelling of glacier dynamics is crucial to minimise uncertainties in predictions of future sea level rise, necessitating detailed reconstructions of long-term glacial histories. One key complexity in these models that is not well understood or documented is ice flow piracy, where ice is redirected between catchment basins, significantly influencing regional glacier dynamics and mass balance. Here, we document and characterise the collapse of Midgaard Glacier in Southeast Greenland using a multi-data approach, providing a 90-year record of the area’s complex glacial history. Initiated over 80 years ago, this collapse triggered catchment-scale dynamic changes in several neighbouring glaciers, impacting local glacial stability throughout the 20th century and into the present. Our analysis reveals that catchment-scale ice flow piracy can cause substantial disturbances in mass balance evolution and catchment reconfigurations, independent of climatic conditions. These findings underscore the importance of understanding long-term changes in complex glacier systems to make accurate predictions of future glacial mass loss and associated sea-level rise.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54045-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Southeast Greenland contributes significantly to global sea level rise, with mass loss having increased by about 600% over the past 30 years due to enhanced melt and dynamic instabilities of marine-terminating glaciers. Accurate modelling of glacier dynamics is crucial to minimise uncertainties in predictions of future sea level rise, necessitating detailed reconstructions of long-term glacial histories. One key complexity in these models that is not well understood or documented is ice flow piracy, where ice is redirected between catchment basins, significantly influencing regional glacier dynamics and mass balance. Here, we document and characterise the collapse of Midgaard Glacier in Southeast Greenland using a multi-data approach, providing a 90-year record of the area’s complex glacial history. Initiated over 80 years ago, this collapse triggered catchment-scale dynamic changes in several neighbouring glaciers, impacting local glacial stability throughout the 20th century and into the present. Our analysis reveals that catchment-scale ice flow piracy can cause substantial disturbances in mass balance evolution and catchment reconfigurations, independent of climatic conditions. These findings underscore the importance of understanding long-term changes in complex glacier systems to make accurate predictions of future glacial mass loss and associated sea-level rise.

Abstract Image

格陵兰东南部米德加德冰川坍塌后的区域冰流盗采现象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信