Junchuan Zhang, Haodong Wu, Yi Zhang, Fangfang Cao, Zhiheng Qiu, Minghui Li, Xiting Lang, Yongjie Jiang, Yangyang Gou, Xirui Liu, Abdullah M. Asiri, Paul J. Dyson, Mohammad Khaja Nazeeruddin, Jichun Ye, Chuanxiao Xiao
{"title":"Investigation of Potential-Induced Degradation and Recovery in Perovskite Minimodules","authors":"Junchuan Zhang, Haodong Wu, Yi Zhang, Fangfang Cao, Zhiheng Qiu, Minghui Li, Xiting Lang, Yongjie Jiang, Yangyang Gou, Xirui Liu, Abdullah M. Asiri, Paul J. Dyson, Mohammad Khaja Nazeeruddin, Jichun Ye, Chuanxiao Xiao","doi":"10.1002/pip.3848","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Potential-induced degradation (PID) is a prevalent concern in current commercial photovoltaic technologies, impacting their reliability, with the mechanistic basis for PID in perovskite photovoltaic technologies being poorly understood. Here, we investigate the PID mechanism in perovskite minimodules. Our findings reveal nonuniform degradation in the photoluminescence intensity and spectral blue shift. After 60-h laboratory PID stress tests at −1500 V and 60°C, device efficiency drastically decreases by 96%, and the shunt resistance decreases by 97%, accompanied by a significant quantity of Na<sup>+</sup> ions (derived from the soda lime glass) throughout the device structure, leading to a typical PID-shunting effect. Interestingly, we observed a rapid recovery of device performance during room-temperature dark storage, in which Na<sup>+</sup> ions located close to the glass substrate side rapidly migrated out of the device. Moreover, we also found that the Na<sup>+</sup> ions do not appear to diffuse through the grain boundaries but rather their neighboring area and grain interiors, judging by microscopic conductivity mappings.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"941-949"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Potential-induced degradation (PID) is a prevalent concern in current commercial photovoltaic technologies, impacting their reliability, with the mechanistic basis for PID in perovskite photovoltaic technologies being poorly understood. Here, we investigate the PID mechanism in perovskite minimodules. Our findings reveal nonuniform degradation in the photoluminescence intensity and spectral blue shift. After 60-h laboratory PID stress tests at −1500 V and 60°C, device efficiency drastically decreases by 96%, and the shunt resistance decreases by 97%, accompanied by a significant quantity of Na+ ions (derived from the soda lime glass) throughout the device structure, leading to a typical PID-shunting effect. Interestingly, we observed a rapid recovery of device performance during room-temperature dark storage, in which Na+ ions located close to the glass substrate side rapidly migrated out of the device. Moreover, we also found that the Na+ ions do not appear to diffuse through the grain boundaries but rather their neighboring area and grain interiors, judging by microscopic conductivity mappings.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.