Fatigue Limit Estimation for Post-Peened Induction-Hardened and Tempered Steel Considering Changes in Surface Properties

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Shogo Takesue, Keisuke Ono, Koichiro Nambu, Shoichi Kikuchi
{"title":"Fatigue Limit Estimation for Post-Peened Induction-Hardened and Tempered Steel Considering Changes in Surface Properties","authors":"Shogo Takesue,&nbsp;Keisuke Ono,&nbsp;Koichiro Nambu,&nbsp;Shoichi Kikuchi","doi":"10.1111/ffe.14454","DOIUrl":null,"url":null,"abstract":"<p>Shot peening (SP) and fine particle peening (FPP) were performed as post-treatments on induction-hardened and tempered AISI 4140 steels. Furthermore, the combined effects of surface characteristics including changes in surface morphology, compressive residual stress, and hardness on the fatigue limit were quantitatively examined. The surface characteristics of the prepared specimens were investigated using a laser and stereomicroscope, a micro-Vickers hardness tester, and an X-ray device for residual stress measurements. The rotating bending fatigue properties were also examined. FPP increased the fatigue limit of induction-hardened and tempered steel samples by introducing compressive residual stress and increasing their surface hardness. Conversely, the fatigue limit of the steel treated with SP was lower than that of the electrochemically polished sample owing to the formation of large dents. The fatigue limits of post-peened induction-hardened and tempered steels can be estimated using a modified Goodman diagram considering changes in surface properties.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 12","pages":"4607-4617"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14454","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14454","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Shot peening (SP) and fine particle peening (FPP) were performed as post-treatments on induction-hardened and tempered AISI 4140 steels. Furthermore, the combined effects of surface characteristics including changes in surface morphology, compressive residual stress, and hardness on the fatigue limit were quantitatively examined. The surface characteristics of the prepared specimens were investigated using a laser and stereomicroscope, a micro-Vickers hardness tester, and an X-ray device for residual stress measurements. The rotating bending fatigue properties were also examined. FPP increased the fatigue limit of induction-hardened and tempered steel samples by introducing compressive residual stress and increasing their surface hardness. Conversely, the fatigue limit of the steel treated with SP was lower than that of the electrochemically polished sample owing to the formation of large dents. The fatigue limits of post-peened induction-hardened and tempered steels can be estimated using a modified Goodman diagram considering changes in surface properties.

Abstract Image

考虑表面性质变化的强化后感应淬火和回火钢的疲劳极限估算
对感应淬火和回火的 AISI 4140 钢进行了喷丸强化(SP)和细颗粒强化(FPP)后处理。此外,还定量研究了表面特征(包括表面形态、压缩残余应力和硬度的变化)对疲劳极限的综合影响。使用激光和体视显微镜、显微维氏硬度计和用于残余应力测量的 X 射线装置对制备试样的表面特征进行了研究。此外,还考察了旋转弯曲疲劳特性。通过引入压缩残余应力和提高表面硬度,FPP 提高了感应淬火和回火钢样品的疲劳极限。相反,用 SP 处理过的钢的疲劳极限低于电化学抛光样品,原因是形成了大凹痕。考虑到表面特性的变化,可以使用修改后的古德曼图估算感应淬火和回火后钢的疲劳极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信