Flexible Continuum Robot with Variable Stiffness, Shape-Aware, and Self-Heating Capabilities

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Ximing Zhao, Yilin Su, Qingzhang Xu, Haohang Liu, Rui Shi, Meiyang Zhang, Xuyan Hou, Youyu Wang
{"title":"Flexible Continuum Robot with Variable Stiffness, Shape-Aware, and Self-Heating Capabilities","authors":"Ximing Zhao,&nbsp;Yilin Su,&nbsp;Qingzhang Xu,&nbsp;Haohang Liu,&nbsp;Rui Shi,&nbsp;Meiyang Zhang,&nbsp;Xuyan Hou,&nbsp;Youyu Wang","doi":"10.1002/aisy.202400166","DOIUrl":null,"url":null,"abstract":"<p>Conventional continuum robots have outstanding flexibility and dexterity. However, when the robot needs to interact with the environment, the softness may affect the performance of the robot. Especially in transport tasks, the softness of continuum robots can lead to handling failures and drastic drops in precision. The variable stiffness continuum robot combines the advantages of flexibility and rigidity, which is conducive to expanding the application scenarios of flexible continuum robots. This article proposes a flexible continuum robot that simultaneously realizes variable stiffness, shape-aware, and self-heating functions using liquid metal. The low-temperature phase transition property of liquid metal is utilized to realize the variable stiffness function; the overall stiffness of the robot can reach the range of 18.5–183 N m<sup>−1</sup>, which can realize a tenfold stiffness gain. The conductivity of liquid metal is utilized to develop the shape-aware function, and the monitoring accuracy is within 5%. At the same time, this article utilizes the liquid metal's resistive thermal effect to realize heating function, so that the robot no longer needs heating systems such as heating wires and can realize the phase transition by energizing itself. Based on this design, the robot arm can realize the transition between maximum and minimum stiffness within 240 s.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional continuum robots have outstanding flexibility and dexterity. However, when the robot needs to interact with the environment, the softness may affect the performance of the robot. Especially in transport tasks, the softness of continuum robots can lead to handling failures and drastic drops in precision. The variable stiffness continuum robot combines the advantages of flexibility and rigidity, which is conducive to expanding the application scenarios of flexible continuum robots. This article proposes a flexible continuum robot that simultaneously realizes variable stiffness, shape-aware, and self-heating functions using liquid metal. The low-temperature phase transition property of liquid metal is utilized to realize the variable stiffness function; the overall stiffness of the robot can reach the range of 18.5–183 N m−1, which can realize a tenfold stiffness gain. The conductivity of liquid metal is utilized to develop the shape-aware function, and the monitoring accuracy is within 5%. At the same time, this article utilizes the liquid metal's resistive thermal effect to realize heating function, so that the robot no longer needs heating systems such as heating wires and can realize the phase transition by energizing itself. Based on this design, the robot arm can realize the transition between maximum and minimum stiffness within 240 s.

Abstract Image

具有可变刚度、形状感知和自加热功能的柔性连续机器人
传统的连续机器人具有出色的灵活性和灵巧性。然而,当机器人需要与环境交互时,柔软度可能会影响机器人的性能。特别是在运输任务中,连续体机器人的柔软度可能会导致搬运失败和精度急剧下降。变刚度连续机器人兼具柔性和刚性的优点,有利于拓展柔性连续机器人的应用场景。本文提出了一种利用液态金属同时实现变刚度、形状感知和自加热功能的柔性连续机器人。利用液态金属的低温相变特性实现变刚度功能,机器人的整体刚度可达 18.5-183 N m-1,可实现十倍的刚度增益。利用液态金属的导电性开发了形状感知功能,监测精度在 5%以内。同时,本文利用液态金属的电阻热效应实现加热功能,使机器人不再需要加热丝等加热系统,通过自身通电即可实现相变。基于这种设计,机器人手臂可在 240 秒内实现最大刚度和最小刚度之间的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信