Equivariant algebraic concordance of strongly invertible knots

IF 0.8 2区 数学 Q2 MATHEMATICS
Alessio Di Prisa
{"title":"Equivariant algebraic concordance of strongly invertible knots","authors":"Alessio Di Prisa","doi":"10.1112/topo.70006","DOIUrl":null,"url":null,"abstract":"<p>By considering a particular type of invariant Seifert surfaces we define a homomorphism <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> from the (topological) equivariant concordance group of directed strongly invertible knots <span></span><math>\n <semantics>\n <mover>\n <mi>C</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{\\mathcal {C}}$</annotation>\n </semantics></math> to a new equivariant algebraic concordance group <span></span><math>\n <semantics>\n <msup>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <mi>Z</mi>\n </msup>\n <annotation>$\\widetilde{\\mathcal {G}}^\\mathbb {Z}$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> lifts both Miller and Powell's equivariant algebraic concordance homomorphism (<i>J. Lond. Math. Soc</i>. (2023), no. 107, 2025-2053) and Alfieri and Boyle's equivariant signature (<i>Michigan Math. J. 1</i> (2023), no. 1, 1–17). Moreover, we provide a partial result on the isomorphism type of <span></span><math>\n <semantics>\n <msup>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <mi>Z</mi>\n </msup>\n <annotation>$\\widetilde{\\mathcal {G}}^\\mathbb {Z}$</annotation>\n </semantics></math> and obtain a new obstruction to equivariant sliceness, which can be viewed as an equivariant Fox–Milnor condition. We define new equivariant signatures and using these we obtain novel lower bounds on the equivariant slice genus. Finally, we show that <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> can obstruct equivariant sliceness for knots with Alexander polynomial one.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

By considering a particular type of invariant Seifert surfaces we define a homomorphism Φ $\Phi$ from the (topological) equivariant concordance group of directed strongly invertible knots C $\widetilde{\mathcal {C}}$ to a new equivariant algebraic concordance group G Z $\widetilde{\mathcal {G}}^\mathbb {Z}$ . We prove that Φ $\Phi$ lifts both Miller and Powell's equivariant algebraic concordance homomorphism (J. Lond. Math. Soc. (2023), no. 107, 2025-2053) and Alfieri and Boyle's equivariant signature (Michigan Math. J. 1 (2023), no. 1, 1–17). Moreover, we provide a partial result on the isomorphism type of G Z $\widetilde{\mathcal {G}}^\mathbb {Z}$ and obtain a new obstruction to equivariant sliceness, which can be viewed as an equivariant Fox–Milnor condition. We define new equivariant signatures and using these we obtain novel lower bounds on the equivariant slice genus. Finally, we show that Φ $\Phi$ can obstruct equivariant sliceness for knots with Alexander polynomial one.

Abstract Image

强反转结的等变代数一致性
通过考虑一种特殊类型的不变塞弗特曲面,我们定义了一个从有向强可逆结的(拓扑)等变协整群 C ∼ $\widetilde{\mathcal {C}}$ 到一个新的等变代数协整群 G ∼ Z $\widetilde{\mathcal {G}}^\mathbb {Z}$ 的同态关系 Φ $\Phi$ 。我们证明 Φ $\Phi$ 既提升了 Miller 和 Powell 的等变代数和同态 (J. Lond. Math.Math.Soc. (2023), no. 107, 2025-2053) 以及 Alfieri 和 Boyle 的等变签名 (Michigan Math.J. 1 (2023),第 1 期,1-17)。此外,我们还提供了关于 G ∼ Z $\widetilde\{mathcal {G}}^\mathbb {Z}$ 的同构类型的部分结果,并得到了等变切片性的新障碍,它可以看作是等变 Fox-Milnor 条件。我们定义了新的等变签名,并利用这些签名得到了等变切片属的新下限。最后,我们证明了 Φ $\Phi$ 可以阻碍亚历山大多项式为一的结的等变切片性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信