Metrics of positive Ricci curvature on simply-connected manifolds of dimension 6 k $6k$

IF 0.8 2区 数学 Q2 MATHEMATICS
Philipp Reiser
{"title":"Metrics of positive Ricci curvature on simply-connected manifolds of dimension \n \n \n 6\n k\n \n $6k$","authors":"Philipp Reiser","doi":"10.1112/topo.70007","DOIUrl":null,"url":null,"abstract":"<p>A consequence of the surgery theorem of Gromov and Lawson is that every closed, simply-connected 6-manifold admits a Riemannian metric of positive scalar curvature. For metrics of positive Ricci curvature, it is widely open whether a similar result holds; there are no obstructions known for those manifolds to admit a metric of positive Ricci curvature, while the number of examples known is limited. In this article, we introduce a new description of certain <span></span><math>\n <semantics>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$6k$</annotation>\n </semantics></math>-dimensional manifolds via labeled bipartite graphs and use an earlier result of the author to construct metrics of positive Ricci curvature on these manifolds. In this way, we obtain many new examples, both spin and nonspin, of <span></span><math>\n <semantics>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$6k$</annotation>\n </semantics></math>-dimensional manifolds with a metric of positive Ricci curvature.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A consequence of the surgery theorem of Gromov and Lawson is that every closed, simply-connected 6-manifold admits a Riemannian metric of positive scalar curvature. For metrics of positive Ricci curvature, it is widely open whether a similar result holds; there are no obstructions known for those manifolds to admit a metric of positive Ricci curvature, while the number of examples known is limited. In this article, we introduce a new description of certain 6 k $6k$ -dimensional manifolds via labeled bipartite graphs and use an earlier result of the author to construct metrics of positive Ricci curvature on these manifolds. In this way, we obtain many new examples, both spin and nonspin, of 6 k $6k$ -dimensional manifolds with a metric of positive Ricci curvature.

维数为 6 k $6k$ 的简单连接流形上的正里奇曲率度量
格罗莫夫(Gromov)和劳森(Lawson)的手术定理的一个结果是,每一个封闭的、简单连接的 6-manifold(6-manifold)都容许一个具有正标度曲率的黎曼度量。对于正利玛窦曲率的度量,类似的结果是否成立还没有定论;目前还不知道这些流形是否存在接纳正利玛窦曲率度量的障碍,而已知的例子数量有限。在这篇文章中,我们通过带标签的二叉图引入了对某些 6 k $6k$ 维流形的新描述,并利用作者早期的一个结果在这些流形上构造了正利玛窦曲率度量。通过这种方法,我们得到了许多具有正利玛窦曲率度量的 6 k $6k$ -维流形的新例子,包括自旋和非自旋流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信