{"title":"Photovoltaics Literature Survey (No. 194)","authors":"Ziv Hameiri","doi":"10.1002/pip.3857","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Wang B, Chen Q, Wang MM, et al. <b>PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124187.</p><p>Ozturk E, Ogliari E, Sakwa M, et al. <b>Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images.</b> <i>Energy Conversion and Management</i> 2024; <b>319</b>: 118866.</p><p>Almora O, Lopez-Varo P, Escalante R, et al. <b>Instability analysis of perovskite solar cells via short-circuit impedance spectroscopy: A case study on NiO</b><sub><b>x</b></sub> <b>passivation.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(9): 094502.</p><p>El Khoury M, Moret M, Tiberj A, et al. <b>Determination of light-independent shunt resistance in CIGS photovoltaic cells using a collection function-based model.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(2): 024502.</p><p>Li JC, Ji Q, Wang R, et al. <b>Charge generation dynamics in organic photovoltaic blends under one-sun-equivalent illumination detected by highly sensitive terahertz spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 20312-20322.</p><p>Sandner D, Sun K, Stadlbauer A, et al. <b>Hole localization in bulk and 2D lead-halide perovskites studied by time-resolved infrared spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 19852-19862.</p><p>Li Y, Wright B, Hameiri Z. <b>Deep learning-based perspective distortion correction for outdoor photovoltaic module images.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113107.</p><p>Wang S, Wright B, Zhu Y, et al. <b>Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113123.</p><p>Zhou YN, Zhang HH, Li ZF, et al. <b>Heavy boron-doped silicon tunneling inter-layer enables efficient silicon heterojunction solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(35): 46889-46896.</p><p>Li WK, Zhou R, Wang YK, et al. <b>Preparation of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>thin films by RS-ALD and edge passivation application for TOPCon half solar cells.</b> <i>Applied Surface Science</i> 2024; <b>673</b>: 160835.</p><p>Su H, Dou C, Dou F, et al. <b>Enhanced photovoltaic performance of silicon solar cells using a down-shift KCa</b><sub><b>2</b></sub><b>Mg</b><sub><b>2</b></sub><b>(VO</b><sub><b>4</b></sub><b>)</b><sub><b>3</b></sub> <b>phosphor.</b> <i>Dalton Transactions</i> 2024; <b>53</b>(35): 14648-14655.</p><p>Wöhler W, Greulich J. <b>Light trapping in silicon solar cells including secondary reflection on the surrounding.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(5): 737-744.</p><p>Ide K, Nishihara T, Nakamura K, et al. <b>Evaluation of the effect of texture size and rounding process on three-dimensional flexibility of c-Si wafer.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(8): 085503.</p><p>Ziar H. <b>A global statistical assessment of designing silicon-based solar cells for geographical markets.</b> <i>Joule</i> 2024; <b>8</b>(6): 1667-1690.</p><p>Li Y, Ru XN, Yang M, et al. <b>Flexible silicon solar cells with high power-to-weight ratios.</b> <i>Nature</i> 2024; <b>626</b>(7997): 105–110.</p><p>Lorenz A, Wenzel T, Pingel S, et al. <b>Towards a cutting-edge metallization process for silicon heterojunction solar cells with very low silver laydown.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(10): 655-663.</p><p>Soler-Castillo Y, Sahni M, Leon-Castro E. <b>The dynamic of photovoltaic resources on its performance predictability, based on two new approaches.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(10): 701-745.</p><p>Xie A, Wang G, Sun Y, et al. <b>Bifacial silicon heterojunction solar cells using transparent-conductive-oxide- and dopant-free electron-selective contacts.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(10): 664-674.</p><p>Ding D, Gao C, Wang X, et al. <b>Optimization of rear surface morphology in n-type TOPCon c-Si solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113142.</p><p>Jiang XL, Chen XY, Zhang JB, et al. <b>Phosphorus doped hydrogenated silicon oxycarbide: Film formation, properties and its application on silicon heterojunction solar cell.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113103.</p><p>Kashizadeh A, Basnet R, Black L, et al. <b>Auger-limited bulk lifetimes in industrial Czochralski-grown n-type silicon ingots with melt recharging.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113143.</p><p>Mette A, Hörnlein S, Stenzel F, et al. <b>Q.ANTUM NEO with LECO Exceeding 25.5% cell Efficiency.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113110.</p><p>Qin X, Chen W, Sun F, et al. <b>Enhanced adhesion strength of copper metallization on silicon heterojunction solar cell due to improved electrochemical reduction uniformity of ITO.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113132.</p><p>Wan W, Shi J, Liang Y, et al. <b>Optimizing phosphorus-doped polysilicon in TOPCon structures using silicon oxide layers to improve silicon solar cell performance.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>276</b>: 113068.</p><p>Xing M, Wang T, Cao F, et al. <b>Advancing nickel seed layer electroplating for enhanced contact and passivation performance in TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113108.</p><p>Yang J, Tang Y, Zhou C, et al. <b>Unveiling the mechanism of ultraviolet-induced degradation in silicon heterojunction solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>276</b>: 113062.</p><p>Yousuf H, Khokhar MQ, Alamgeer, et al. <b>Improving n-TOPCon solar cell printing conditions and performance analysis by local dot contact approaches.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113139.</p><p>Zhou R, Li YS, Tan WC, et al. <b>Insight of effect of silver powders on silver-silicon contacts of crystalline silicon solar cells through analysis of glass structural decay.</b> <i>Solar RRL</i> 2024; <b>8</b>(14): 2400299.</p><p>Qiang ZY, Wu Y, Gao X, et al. <b>A scalable method for fabricating monolithic perovskite/silicon tandem solar cells based on low-cost industrial silicon bottom cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>495</b>: 153422.</p><p>Song TF, Jeswani HK, Azapagic A. <b>Assessing the environmental and economic sustainability of emerging tandem photovoltaic technologies in China.</b> <i>Energy Conversion and Management</i> 2024; <b>318</b>: 118890.</p><p>Fu S, Sun NN, Xian YM, et al. <b>Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells.</b> <i>Joule</i> 2024; <b>8</b>(8): 2220-2237.</p><p>Turkay D, Artuk K, Chin XY, et al. <b>Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells.</b> <i>Joule</i> 2024; <b>8</b>(6): 1735-1753.</p><p>Duan LP, Phang SP, Yan D, et al. <b>Over 29%-efficient, stable n-i-p monolithic perovskite/silicon tandem solar cells based on double-sided poly-Si/SiO</b><sub><b>2</b></sub> <b>passivating contact silicon cells.</b> <i>Journal of Materials Chemistry A</i> 2024; <b>12</b>(31): 20006-20016.</p><p>Gao C, Zhang H, Ma S, et al. <b>Quasi-conformal monolithic n-i-p perovskite/c-Si tandem solar cells with light management strategies exceed 28 % efficiency.</b> <i>Nano Energy</i> 2024; <b>129</b>: 110066.</p><p>Hou FH, Ren XQ, Guo HK, et al. <b>Monolithic perovskite/silicon tandem solar cells: A review of the present status and solutions toward commercial application.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109476.</p><p>Li JX, Farhadi B, Liu SY, et al. <b>Built-in field manipulation through a perovskite homojunction for efficient monolithic perovskite/silicon tandem solar cells.</b> <i>Nano Energy</i> 2024; <b>129</b>: 109976.</p><p>Pei FT, Chen YH, Wang QQ, et al. <b>A binary 2D perovskite passivation for efficient and stable perovskite/silicon tandem solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 7024.</p><p>Aydin E, Allen TG, De Bastiani M, et al. <b>Pathways toward commercial perovskite/silicon tandem photovoltaics.</b> <i>Science</i> 2024; <b>383</b>(6679): 162.</p><p>Chen YH, Yang N, Zheng GHJ, et al. <b>Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells.</b> <i>Science</i> 2024; <b>385</b>(6708): 554-560.</p><p>Ugur E, Said AA, Dally P, et al. <b>Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon.</b> <i>Science</i> 2024; <b>385</b>(6708): 533-538.</p><p>Chang B, Jiang BH, Chen CP, et al. <b>Achieving high efficiency and stability in organic photovoltaics with a nanometer-scale twin p-i-n structured active layer.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(31): 41244-41256.</p><p>Jeong S, Oh J, Park J, et al. <b>Visible-transparent electron-selective self-assembled monolayer for electron-transport-layer-free high-efficiency and flexible organic solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(8): 3771-3779.</p><p>Zhang Z, Yuan SH, Chen TQ, et al. <b>Rational design of flexible-linked 3D dimeric acceptors for stable organic solar cells demonstrating 19.2% efficiency.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(15): 5719-5729.</p><p>Zhao ZM, Chung S, Kim YY, et al. <b>Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(15): 5666-5678.</p><p>Cheng JC, Guo CH, Wang L, et al. <b>Device engineering of non-fullerene organic photovoltaics with extrapolated operational T</b><sub><b>80</b></sub> <b>lifetime over 45,000 h in air.</b> <i>Joule</i> 2024; <b>8</b>(8): 2250-2264.</p><p>Tang H, Liao ZH, Chen QQ, et al. <b>Elucidating the optimal material combinations of organic photovoltaics for maximum industrial viability.</b> <i>Joule</i> 2024; <b>8</b>(8): 2208-2219.</p><p>Valente GT, Guimaraes FEG. <b>Probabilistic modeling of energy transfer in disordered organic semiconductors.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(8): 084501.</p><p>Zhou X, Gu CT, Zheng CY, et al. <b>Cost-effective polymer donors with simple structure for organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2024; <b>12</b>(31): 19839-19860.</p><p>Li HJ, Liu SQ, Liu H, et al. <b>Dynamics parameter correction for predicting the long-term stability of organic photovoltaics.</b> <i>Macromolecules</i> 2024; <b>57</b>(14): 6548-6558.</p><p>Cao LY, Zhang HY, Du XY, et al. <b>Highly electronegative additives suppress energetic disorder to realize 19.19% efficiency binary organic solar cells.</b> <i>Nano Energy</i> 2024; <b>129</b>: 110016.</p><p>Hou H, Wang WX, Kang Q, et al. <b>Undoped MoO</b><sub><b>X</b></sub> <b>with oxygen-rich vacancies as hole transport material for efficient indoor/outdoor organic solar cells.</b> <i>Nano Energy</i> 2024; <b>131</b>: 110173.</p><p>Hu T, Zheng X, Xiao C, et al. <b>Composite side chain induced ordered preaggregation in liquid state for high-performance non-halogen solvent processed organic solar cells.</b> <i>Nano Energy</i> 2024; <b>130</b>: 110172.</p><p>Li QD, Liao XL, Yang ZL, et al. <b>The selenium substitution of solvent additive enables efficient polymer solar cells with efficiency of 19.4%.</b> <i>Nano Energy</i> 2024; <b>129</b>: 110067.</p><p>Zhou JP, Guo CH, Wang L, et al. <b>Thiophene structured additives toward enhanced structural order and reduced non-radiative loss for 19.9% efficiency organic solar cells.</b> <i>Nano Energy</i> 2024; <b>129</b>: 109988.</p><p>Chen C, Wang L, Xia WY, et al. <b>Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 6865.</p><p>He XJ, Qi F, Zou XH, et al. <b>Selenium substitution for dielectric constant improvement and hole-transfer acceleration in non-fullerene organic solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2103.</p><p>Jungbluth A, Cho E, Privitera A, et al. <b>Limiting factors for charge generation in low-offset fullerene-based organic solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 5488.</p><p>Li DY, Lian Q, Du T, et al. <b>Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 7605.</p><p>Annabi Milani E, Piralaee M, Raeyani D, et al. <b>High-performance semi-transparent organic solar cells for window applications using MoO</b><sub><b>3</b></sub><b>/Ag/MoO</b><sub><b>3</b></sub> <b>transparent anodes.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>276</b>(113066.</p><p>Huang XF, Gao YY, Li WP, et al. <b>Efficient and stable Z907-based dye-sensitized solar cells enabled by suppressed charge recombination and photocatalytic activity.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2024; <b>12</b>(34): 13007-13016.</p><p>Yamada R, Nakagawa M, Hirooka S, et al. <b>Physical reservoir computing with visible-light signals using dye-sensitized solar cells.</b> <i>Applied Physics Express</i> 2024; <b>17</b>(9): 097001.</p><p>Agoro MA, Meyer EL. <b>Coating of CoS on hybrid anode electrode with enhance performance in hybrid dye-sensitized solar cells.</b> <i>Electrochimica Acta</i> 2024; <b>502</b>: 144877.</p><p>McAndrews GR, Guo BY, Kaczaral SC, et al. <b>Moisture uptake relaxes stress in metal halide perovskites at the expense of stability.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(8): 4153-4161.</p><p>Bie T, Li R, Gao X, et al. <b>Halogen-functionalized hole transport materials with strong passivation effects for stable and highly efficient quasi-2D perovskite solar cells.</b> <i>Acs Nano</i> 2024; <b>18</b>(34): 23615-23624.</p><p>Chen JW, Fan X, Wang JZ, et al. <b>23.81%-efficiency flexible inverted perovskite solar cells with enhanced stability and flexibility via a Lewis base passivation.</b> <i>Acs Nano</i> 2024; <b>18</b>(29): 19190-19199.</p><p>Li RD, Sun ZY, Yao LB, et al. <b>Unraveling the degradation mechanisms of perovskite solar cells under mechanical tensile loads.</b> <i>Acs Nano</i> 2024; <b>18</b>(35): 24495-24504.</p><p>Roe J, Son JG, Park S, et al. <b>Synergistic buried interface regulation of tin-lead perovskite solar cells via co-self-assembled monolayers.</b> <i>Acs Nano</i> 2024; <b>18</b>(35): 24306-24316.</p><p>Tang JW, Lin Y, Yan HC, et al. <b>20.1% certified efficiency of planar hole transport layer-free carbon-based perovskite solar cells by spacer cation chain length engineering of 2D perovskites.</b> <i>Angewandte Chemie-International Edition</i> 2024; <b>63</b>(33): e202406167.</p><p>Zhou H, Wang WL, Duan YW, et al. <b>Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%.</b> <i>Angewandte Chemie-International Edition</i> 2024; <b>63</b>(33): e202403068.</p><p>Ahn S, Chiu WH, Chu WC, et al. <b>A systematic investigation of PVDF-HFP in perovskite solar cells for improved space mission reliability.</b> <i>Chemical Engineering Journal</i> 2024; <b>496</b>: 153974.</p><p>Ma Z, He B, Tui R, et al. <b>Multifunctional molecular bridge enabled interface passivation and strain release for stable and efficient all-inorganic perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>498</b>: 155396.</p><p>Zhang WY, Zhou QS, Qiu JM, et al. <b>Synergistic effects of the physical modification and chemical passivation enabling efficient perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>497</b>: 154864.</p><p>Yi A, Chae S, Luong HM, et al. <b>Room-temperature-processed perovskite solar cells surpassing 24% efficiency.</b> <i>Joule</i> 2024; <b>8</b>(7): 2087-2104.</p><p>Aftab S, Kabir F, Mukhtar M, et al. <b>Perovskite quantum wires: A review of their exceptional optoelectronic properties and diverse applications in revolutionary technologies.</b> <i>Nano Energy</i> 2024; <b>129</b>: 109995.</p><p>Dai ZY, Yang Y, Huang XF, et al. <b>Interfacial crosslinking benzimidazolium enables eco-friendly inverted perovskite solar cells and modules.</b> <i>Nano Energy</i> 2024; <b>131</b>: 110190.</p><p>Han EQ, Yun JH, Maeng I, et al. <b>Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy.</b> <i>Nano Energy</i> 2024; <b>131</b>: 110136.</p><p>He ZY, Zhang SF, Wei QL, et al. <b>Making a benign buried bottom interface for high-performance perovskite photovoltaics with a chelating molecule.</b> <i>Nano Energy</i> 2024; <b>130</b>: 110166.</p><p>Liu QY, Ou ZP, Ma Z, et al. <b>Perovskite solar cells with self-disintegrating seeds deliver an 83.64% fill factor.</b> <i>Nano Energy</i> 2024; <b>127</b>: 109751.</p><p>Niu GS, Bai BW, Wang YD, et al. <b>Overcoming stability challenges in perovskite solar cells: Addressing Li ions movement in Spiro-OMeTAD layer through nano-graphdiyne incorporation.</b> <i>Nano Energy</i> 2024; <b>129</b>: 110017.</p><p>Qamar MZ, Khalid Z, Shahid R, et al. <b>Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications.</b> <i>Nano Energy</i> 2024; <b>129</b>: 109994.</p><p>Tsvetkov N, Koo D, Kim D, et al. <b>Advances in single-crystal perovskite solar cells: From materials to performance.</b> <i>Nano Energy</i> 2024; <b>130</b>: 110069.</p><p>Wang F, Duan DW, Sun YG, et al. <b>Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics.</b> <i>Nano Energy</i> 2024; <b>125</b>: 109549.</p><p>Zhang FF, Zheng DX, Yu DQ, et al. <b>Perovskite photovoltaic interface: From optimization towards exemption.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109503.</p><p>Zhou XY, Wu JW, Zeng J, et al. <b>Target therapy on buried interface engineering enables stable inverted perovskite solar cells with 25% power conversion efficiency.</b> <i>Nano Energy</i> 2024; <b>130</b>: 110170.</p><p>Ling XF, Guo JJ, Li YP, et al. <b>Chemical bath deposited antimony oxide thin films for efficient perovskite solar cells.</b> <i>Nano Letters</i> 2024; <b>24</b>(29): 9065-9073.</p><p>Wang WT, Holzhey P, Zhou N, et al. <b>Water- and heat-activated dynamic passivation for perovskite photovoltaics.</b> <i>Nature</i> 2024; <b>632</b>(8025): 294–300.</p><p>Xiong SB, Tian FY, Wang F, et al. <b>Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 5607.</p><p>Zhang Y, Li CY, Zhao HY, et al. <b>Synchronized crystallization in tin-lead perovskite solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 6887.</p><p>Zhao CX, Zhou ZW, Almalki M, et al. <b>Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 7139.</p><p>Zhou HT, Cai K, Yu SQ, et al. <b>Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 6679.</p><p>Tang HC, Shen ZC, Shen YZ, et al. <b>Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells.</b> <i>Science</i> 2024; <b>383</b>(6688): 1236-1240.</p><p>Zhao XM, Zhang PK, Liu TJ, et al. <b>Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment.</b> <i>Science</i> 2024; <b>385</b>(6707): 433-438.</p><p>Wang RS, Li YF, Jia SS, et al. <b>In situ vanadium modification induced a back interfacial field passivation effect toward efficient kesterite solar cells beyond 11% efficiency.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(35): 46341-46350.</p><p>Ding DL, Sun YL, Li WB, et al. <b>Efficient window layer modification enabling the remarkable FF and efficiency improvement of kesterite solar cell.</b> <i>Chemical Engineering Journal</i> 2024; <b>497</b>: 155050.</p><p>Liu JL, Wu XY, Xue Y, et al. <b>Se as hetero-nucleation seeds reinforcing intermetallic diffusion for improved electrodeposition-processed CZTS solar cells.</b> <i>Nano Energy</i> 2024; <b>130</b>: 110183.</p><p>Wang Y, Guo J, Siqin L, et al. <b>Enhancing the photovoltaic efficiency of CZTSSe thin-film solar cells via Ag-doping induced defect modulation.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113138.</p><p>Seo G, Han S, Lee DG, et al. <b>Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots.</b> <i>Chemical Engineering Journal</i> 2024; <b>496</b>: 154312.</p><p>Araji MT, Waqas A, Ali R. <b>Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules.</b> <i>Applied Energy</i> 2024; <b>375</b>: 124201.</p><p>Fang M, Qian W, Qian T, et al. <b>DGImNet: A deep learning model for photovoltaic soiling loss estimation.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124335.</p><p>Hammam AH, Nayel MA, Mohamed MA. <b>Optimal design of sizing and allocations for highway electric vehicle charging stations based on a PV system.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124284.</p><p>Yao WX, Xu A, Kong XR, et al. <b>Analysis of dust deposition law at the micro level and its impact on the annual performance of photovoltaic modules.</b> <i>Energy</i> 2024; <b>306</b>: 132448.</p><p>Chang ZH, Jia KW, Han T, et al. <b>Towards more reliable photovoltaic energy conversion systems: A-supervised perspective on detection.</b> <i>Energy Conversion and Management</i> 2024; <b>316</b>: 118845.</p><p>Gong B, An A, Shi Y, et al. <b>Fault diagnosis of photovoltaic array with multi-module fusion under hyperparameter optimization.</b> <i>Energy Conversion and Management</i> 2024; <b>319</b>: 118974.</p><p>Sarr A, Soro YM, Tossa AK, et al. <b>A new approach for modelling photovoltaic panel configuration maximizing crop yield and photovoltaic array outputs in agrivoltaics systems.</b> <i>Energy Conversion and Management</i> 2024; <b>309</b>: 118436.</p><p>Bai WW, Zhang ZD, Zhang YZ, et al. <b>Virtual coupling control of photovoltaic-energy storage power generation system for efficient power support.</b> <i>Energy Reports</i> 2024; <b>12</b>: 1742-1752.</p><p>Chaaban AK, Alfadl N. <b>A comparative study of machine learning approaches for an accurate predictive modeling of solar energy generation.</b> <i>Energy Reports</i> 2024; <b>12</b>: 1293-1302.</p><p>Diaba SY, Alola AA, Simoes MG, et al. <b>Deep learning-based evaluation of photovoltaic power generation.</b> <i>Energy Reports</i> 2024; <b>12</b>: 2077-2085.</p><p>Lu SD, Liu HD, Wang MH, et al. <b>A novel strategy for multitype fault diagnosis in photovoltaic systems using multiple regression analysis and support vector machines.</b> <i>Energy Reports</i> 2024; <b>12</b>: 2824-2844.</p><p>Pereira S, Canhoto P, Oozeki T, et al. <b>Assessment of thermal modeling of photovoltaic panels for predicting power generation using only manufacturer data.</b> <i>Energy Reports</i> 2024; <b>12</b>: 1431-1448.</p><p>Rivero-Cacho A, Sanchez-Barroso G, Gonzalez-Dominguez J, et al. <b>Long-term power forecasting of photovoltaic plants using artificial neural networks.</b> <i>Energy Reports</i> 2024; <b>12</b>: 2855-2864.</p><p>Kumaraswamy M, Naik KA. <b>Backpropagation artificial neural network-based maximum power point tracking controller with image encryption inspired solar photovoltaic array reconfiguration.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>136</b>: 108979.</p><p>Sepúlveda-Oviedo EH, Travé-Massuyès L, Subias A, et al. <b>An ensemble learning framework for snail trail fault detection and diagnosis in photovoltaic modules.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>137</b>: 109068.</p><p>Wu SZ, Kong YG, Xu RD, et al. <b>A feature space class balancing strategy-based fault classification method in solar photovoltaic modules.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>136</b>: 108991.</p><p>Costanzo L, Rubino G, Rubino L, et al. <b>PFC control signal driven MPPT technique for grid-connected PV systems.</b> <i>IEEE Transactions on Power Electronics</i> 2024; <b>39</b>(8): 10368-10379.</p><p>Turnley JW, Grant A, Schull VZ, et al. <b>The viability of photovoltaics on agricultural land: Can PV solve the food vs fuel debate?</b> <i>Journal of Cleaner Production</i> 2024; <b>469</b>: 143191.</p><p>Lewis MR, Ovaitt S, McDanold B, et al. <b>Artificial ground reflector size and position effects on energy yield and economics of single-axis-tracked bifacial photovoltaics.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(10): 675-686.</p><p>Parenti M, Fossa M, Delucchi L. <b>A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>206</b>: 114858.</p><p>Oulefki A, Trongtirakul T, Agaian S, et al. <b>Multi-view VR imaging for enhanced analysis of dust accumulation on solar panels.</b> <i>Solar Energy</i> 2024; <b>279</b>: 112708.</p><p>Abdallah AA, Abdelrahim M, Elgaili M, et al. <b>Degradation of photovoltaic module backsheet materials in desert climate.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113118.</p><p>Buerhop C, Stroyuk O, Mashkov O, et al. <b>Polymer encapsulation impact on potential-induced degradation in PV modules revealed by a multi-modal field study.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113111.</p><p>Jankovec M, Brecl K, Bokalič M, et al. <b>Monitoring solar irradiance and PV module performance in mobile applications.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113101.</p><p>Kumar R, Gupta R. <b>Shunts in crystalline silicon PV modules: A comprehensive review of investigation, characterization, and mitigation.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113121.</p><p>Reichel C, Forster J, Artha B, et al. <b>Design aspects in consideration of hotspot phenomena in high-performance photovoltaic modules featuring different silicon solar cell architectures.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>276</b>: 113058.</p><p>Carpentieri A, Folini D, Leinonen J, et al. <b>Extending intraday solar forecast horizons with deep generative models.</b> <i>Applied Energy</i> 2025; <b>377</b>: 124186.</p><p>Chen X, Mao HZ, Cheng N, et al. <b>Climate change impacts on global photovoltaic variability.</b> <i>Applied Energy</i> 2024; <b>374</b>: 124087.</p><p>Ding JF, Du DB, Duan DZ, et al. <b>A network analysis of global competition in photovoltaic technologies: Evidence from patent data.</b> <i>Applied Energy</i> 2024; <b>375</b>: 124010.</p><p>Steinbach SA, Blaschke MJ. <b>Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?</b> <i>Applied Energy</i> 2024; <b>375</b>: 124101.</p><p>Wen Y, Lin PZ. <b>Offshore solar photovoltaic potential in the seas around China.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124279.</p><p>Williams HJ, Wang Y, Yuan B, et al. <b>Rethinking agrivoltaic incentive programs: A science-based approach to encourage practical design solutions.</b> <i>Applied Energy</i> 2025; <b>377</b>: 124272.</p><p>Zhao X, Li X, Liu T, et al. <b>How photovoltaic industry policies foster the development of silicon solar cell manufacturing technology: Based on self-attention mechanism.</b> <i>Energy</i> 2024; <b>308</b>: 132866.</p><p>Gu QN, Li SF, Tian SH, et al. <b>Impact of climate risk on energy market risk spillover: Evidence from dynamic heterogeneous network analysis.</b> <i>Energy Economics</i> 2024; <b>137</b>: 107775.</p><p>Lin BQ, Liu YD. <b>Global carbon neutrality and China's contribution: The impact of international carbon market policies on China's photovoltaic product exports.</b> <i>Energy Policy</i> 2024; <b>193</b>: 114299.</p><p>Thonig R, Lilliestam J. <b>Cross-technology legitimacy feedback: The politics of policy-led innovation for complementarity in concentrating solar power.</b> <i>Environmental Innovation and Societal Transitions</i> 2024; <b>52</b>: 100884.</p><p>Pan LW, Chen JJ, Zhao YL, et al. <b>Towards optimal customized electricity pricing via iterative two-layer optimization for consumers and prosumers.</b> <i>Journal of Cleaner Production</i> 2024; <b>469</b>: 143208.</p><p>Wang ZG, Liu Y, Gao F, et al. <b>Environmental impact assessment of the manufacture and use of n-type and p-type photovoltaic modules in China.</b> <i>Journal of Cleaner Production</i> 2024; <b>470</b>: 143187.</p><p>Szabo L, Moner-Girona M, Jaeger-Waldau A, et al. <b>Impacts of large-scale deployment of vertical bifacial photovoltaics on European electricity market dynamics.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 6681.</p><p>Soler-Castillo Y, Sahni M, Leon-Castro E. <b>The dynamic of photovoltaic resources on its performance predictability, based on two new approaches.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(10): 701-745.</p><p>Lee C-C, Wang C-W, Liu F. <b>Does green credit promote the performance of new energy companies and how? The role of R&D investment and financial development.</b> <i>Renewable Energy</i> 2024; <b>235</b>: 121301.</p><p>Liu Z, Guo J, Wang X, et al. <b>Prediction of long-term photovoltaic power generation in the context of climate change.</b> <i>Renewable Energy</i> 2024; <b>235</b>: 121263.</p><p>Yang BT, Huang YH, Chen CC. <b>Hydrophobic deep eutectic solvents as novel media for the recycling of waste photovoltaic modules.</b> <i>Chemical Engineering Journal</i> 2024; <b>498</b>: 155011.</p><p>Sanathi R, Banerjee S, Bhowmik S. <b>A technical review of crystalline silicon photovoltaic module recycling.</b> <i>Solar Energy</i> 2024; <b>281</b>: 112869.</p><p>Gallegos MV, Gil-Escrig L, Zanoni KPS, et al. <b>Recycling and reusing ITO substrates from perovskite solar cells: A sustainable perspective.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113117.</p><p>Lee J-K, Ko S-W, Hwang H-M, et al. <b>Crystalline silicon solar cell with an efficiency of 20.05% remanufactured using 30% silicon scraps recycled from a waste photovoltaic module.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113102.</p><p>Su P, He Y, Feng Y, et al. <b>Advancements in end-of-life crystalline silicon photovoltaic module recycling: Current state and future prospects.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113109.</p><p>Wahman M, Surowiak A, Ebin B, et al. <b>PV back sheet recovery from c-Si modules using hot knife technique.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>276</b>: 113067.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"950-956"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3857","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].
Wang B, Chen Q, Wang MM, et al. PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.Applied Energy 2024; 376: 124187.
Ozturk E, Ogliari E, Sakwa M, et al. Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images.Energy Conversion and Management 2024; 319: 118866.
Almora O, Lopez-Varo P, Escalante R, et al. Instability analysis of perovskite solar cells via short-circuit impedance spectroscopy: A case study on NiOxpassivation.Journal of Applied Physics 2024; 136(9): 094502.
El Khoury M, Moret M, Tiberj A, et al. Determination of light-independent shunt resistance in CIGS photovoltaic cells using a collection function-based model.Journal of Applied Physics 2024; 136(2): 024502.
Li JC, Ji Q, Wang R, et al. Charge generation dynamics in organic photovoltaic blends under one-sun-equivalent illumination detected by highly sensitive terahertz spectroscopy.Journal of the American Chemical Society 2024; 146(29): 20312-20322.
Sandner D, Sun K, Stadlbauer A, et al. Hole localization in bulk and 2D lead-halide perovskites studied by time-resolved infrared spectroscopy.Journal of the American Chemical Society 2024; 146(29): 19852-19862.
Li Y, Wright B, Hameiri Z. Deep learning-based perspective distortion correction for outdoor photovoltaic module images.Solar Energy Materials and Solar Cells 2024; 277: 113107.
Wang S, Wright B, Zhu Y, et al. Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models.Solar Energy Materials and Solar Cells 2024; 277: 113123.
Zhou YN, Zhang HH, Li ZF, et al. Heavy boron-doped silicon tunneling inter-layer enables efficient silicon heterojunction solar cells.Acs Applied Materials and Interfaces 2024; 16(35): 46889-46896.
Li WK, Zhou R, Wang YK, et al. Preparation of Al2O3thin films by RS-ALD and edge passivation application for TOPCon half solar cells.Applied Surface Science 2024; 673: 160835.
Su H, Dou C, Dou F, et al. Enhanced photovoltaic performance of silicon solar cells using a down-shift KCa2Mg2(VO4)3phosphor.Dalton Transactions 2024; 53(35): 14648-14655.
Wöhler W, Greulich J. Light trapping in silicon solar cells including secondary reflection on the surrounding.IEEE Journal of Photovoltaics 2024; 14(5): 737-744.
Ide K, Nishihara T, Nakamura K, et al. Evaluation of the effect of texture size and rounding process on three-dimensional flexibility of c-Si wafer.Japanese Journal of Applied Physics 2024; 63(8): 085503.
Ziar H. A global statistical assessment of designing silicon-based solar cells for geographical markets.Joule 2024; 8(6): 1667-1690.
Li Y, Ru XN, Yang M, et al. Flexible silicon solar cells with high power-to-weight ratios.Nature 2024; 626(7997): 105–110.
Lorenz A, Wenzel T, Pingel S, et al. Towards a cutting-edge metallization process for silicon heterojunction solar cells with very low silver laydown.Progress in Photovoltaics: Research and Applications 2024; 32(10): 655-663.
Soler-Castillo Y, Sahni M, Leon-Castro E. The dynamic of photovoltaic resources on its performance predictability, based on two new approaches.Progress in Photovoltaics: Research and Applications 2024; 32(10): 701-745.
Xie A, Wang G, Sun Y, et al. Bifacial silicon heterojunction solar cells using transparent-conductive-oxide- and dopant-free electron-selective contacts.Progress in Photovoltaics: Research and Applications 2024; 32(10): 664-674.
Ding D, Gao C, Wang X, et al. Optimization of rear surface morphology in n-type TOPCon c-Si solar cells.Solar Energy Materials and Solar Cells 2024; 277: 113142.
Jiang XL, Chen XY, Zhang JB, et al. Phosphorus doped hydrogenated silicon oxycarbide: Film formation, properties and its application on silicon heterojunction solar cell.Solar Energy Materials and Solar Cells 2024; 277: 113103.
Kashizadeh A, Basnet R, Black L, et al. Auger-limited bulk lifetimes in industrial Czochralski-grown n-type silicon ingots with melt recharging.Solar Energy Materials and Solar Cells 2024; 277: 113143.
Mette A, Hörnlein S, Stenzel F, et al. Q.ANTUM NEO with LECO Exceeding 25.5% cell Efficiency.Solar Energy Materials and Solar Cells 2024; 277: 113110.
Qin X, Chen W, Sun F, et al. Enhanced adhesion strength of copper metallization on silicon heterojunction solar cell due to improved electrochemical reduction uniformity of ITO.Solar Energy Materials and Solar Cells 2024; 277: 113132.
Wan W, Shi J, Liang Y, et al. Optimizing phosphorus-doped polysilicon in TOPCon structures using silicon oxide layers to improve silicon solar cell performance.Solar Energy Materials and Solar Cells 2024; 276: 113068.
Xing M, Wang T, Cao F, et al. Advancing nickel seed layer electroplating for enhanced contact and passivation performance in TOPCon solar cells.Solar Energy Materials and Solar Cells 2024; 277: 113108.
Yang J, Tang Y, Zhou C, et al. Unveiling the mechanism of ultraviolet-induced degradation in silicon heterojunction solar cells.Solar Energy Materials and Solar Cells 2024; 276: 113062.
Yousuf H, Khokhar MQ, Alamgeer, et al. Improving n-TOPCon solar cell printing conditions and performance analysis by local dot contact approaches.Solar Energy Materials and Solar Cells 2024; 277: 113139.
Zhou R, Li YS, Tan WC, et al. Insight of effect of silver powders on silver-silicon contacts of crystalline silicon solar cells through analysis of glass structural decay.Solar RRL 2024; 8(14): 2400299.
Qiang ZY, Wu Y, Gao X, et al. A scalable method for fabricating monolithic perovskite/silicon tandem solar cells based on low-cost industrial silicon bottom cells.Chemical Engineering Journal 2024; 495: 153422.
Song TF, Jeswani HK, Azapagic A. Assessing the environmental and economic sustainability of emerging tandem photovoltaic technologies in China.Energy Conversion and Management 2024; 318: 118890.
Fu S, Sun NN, Xian YM, et al. Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells.Joule 2024; 8(8): 2220-2237.
Turkay D, Artuk K, Chin XY, et al. Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells.Joule 2024; 8(6): 1735-1753.
Duan LP, Phang SP, Yan D, et al. Over 29%-efficient, stable n-i-p monolithic perovskite/silicon tandem solar cells based on double-sided poly-Si/SiO2passivating contact silicon cells.Journal of Materials Chemistry A 2024; 12(31): 20006-20016.
Gao C, Zhang H, Ma S, et al. Quasi-conformal monolithic n-i-p perovskite/c-Si tandem solar cells with light management strategies exceed 28 % efficiency.Nano Energy 2024; 129: 110066.
Hou FH, Ren XQ, Guo HK, et al. Monolithic perovskite/silicon tandem solar cells: A review of the present status and solutions toward commercial application.Nano Energy 2024; 124: 109476.
Li JX, Farhadi B, Liu SY, et al. Built-in field manipulation through a perovskite homojunction for efficient monolithic perovskite/silicon tandem solar cells.Nano Energy 2024; 129: 109976.
Pei FT, Chen YH, Wang QQ, et al. A binary 2D perovskite passivation for efficient and stable perovskite/silicon tandem solar cells.Nature Communications 2024; 15(1): 7024.
Aydin E, Allen TG, De Bastiani M, et al. Pathways toward commercial perovskite/silicon tandem photovoltaics.Science 2024; 383(6679): 162.
Chen YH, Yang N, Zheng GHJ, et al. Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells.Science 2024; 385(6708): 554-560.
Ugur E, Said AA, Dally P, et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon.Science 2024; 385(6708): 533-538.
Chang B, Jiang BH, Chen CP, et al. Achieving high efficiency and stability in organic photovoltaics with a nanometer-scale twin p-i-n structured active layer.Acs Applied Materials and Interfaces 2024; 16(31): 41244-41256.
Jeong S, Oh J, Park J, et al. Visible-transparent electron-selective self-assembled monolayer for electron-transport-layer-free high-efficiency and flexible organic solar cells.Acs Energy Letters 2024; 9(8): 3771-3779.
Zhang Z, Yuan SH, Chen TQ, et al. Rational design of flexible-linked 3D dimeric acceptors for stable organic solar cells demonstrating 19.2% efficiency.Energy and Environmental Science 2024; 17(15): 5719-5729.
Zhao ZM, Chung S, Kim YY, et al. Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells.Energy and Environmental Science 2024; 17(15): 5666-5678.
Cheng JC, Guo CH, Wang L, et al. Device engineering of non-fullerene organic photovoltaics with extrapolated operational T80lifetime over 45,000 h in air.Joule 2024; 8(8): 2250-2264.
Tang H, Liao ZH, Chen QQ, et al. Elucidating the optimal material combinations of organic photovoltaics for maximum industrial viability.Joule 2024; 8(8): 2208-2219.
Valente GT, Guimaraes FEG. Probabilistic modeling of energy transfer in disordered organic semiconductors.Journal of Applied Physics 2024; 136(8): 084501.
Zhou X, Gu CT, Zheng CY, et al. Cost-effective polymer donors with simple structure for organic solar cells.Journal of Materials Chemistry A 2024; 12(31): 19839-19860.
Li HJ, Liu SQ, Liu H, et al. Dynamics parameter correction for predicting the long-term stability of organic photovoltaics.Macromolecules 2024; 57(14): 6548-6558.
Cao LY, Zhang HY, Du XY, et al. Highly electronegative additives suppress energetic disorder to realize 19.19% efficiency binary organic solar cells.Nano Energy 2024; 129: 110016.
Hou H, Wang WX, Kang Q, et al. Undoped MoOXwith oxygen-rich vacancies as hole transport material for efficient indoor/outdoor organic solar cells.Nano Energy 2024; 131: 110173.
Hu T, Zheng X, Xiao C, et al. Composite side chain induced ordered preaggregation in liquid state for high-performance non-halogen solvent processed organic solar cells.Nano Energy 2024; 130: 110172.
Li QD, Liao XL, Yang ZL, et al. The selenium substitution of solvent additive enables efficient polymer solar cells with efficiency of 19.4%.Nano Energy 2024; 129: 110067.
Zhou JP, Guo CH, Wang L, et al. Thiophene structured additives toward enhanced structural order and reduced non-radiative loss for 19.9% efficiency organic solar cells.Nano Energy 2024; 129: 109988.
Chen C, Wang L, Xia WY, et al. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%.Nature Communications 2024; 15(1): 6865.
He XJ, Qi F, Zou XH, et al. Selenium substitution for dielectric constant improvement and hole-transfer acceleration in non-fullerene organic solar cells.Nature Communications 2024; 15(1): 2103.
Jungbluth A, Cho E, Privitera A, et al. Limiting factors for charge generation in low-offset fullerene-based organic solar cells.Nature Communications 2024; 15(1): 5488.
Li DY, Lian Q, Du T, et al. Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells.Nature Communications 2024; 15(1): 7605.
Annabi Milani E, Piralaee M, Raeyani D, et al. High-performance semi-transparent organic solar cells for window applications using MoO3/Ag/MoO3transparent anodes.Solar Energy Materials and Solar Cells 2024; 276(113066.
Huang XF, Gao YY, Li WP, et al. Efficient and stable Z907-based dye-sensitized solar cells enabled by suppressed charge recombination and photocatalytic activity.Acs Sustainable Chemistry and Engineering 2024; 12(34): 13007-13016.
Yamada R, Nakagawa M, Hirooka S, et al. Physical reservoir computing with visible-light signals using dye-sensitized solar cells.Applied Physics Express 2024; 17(9): 097001.
Agoro MA, Meyer EL. Coating of CoS on hybrid anode electrode with enhance performance in hybrid dye-sensitized solar cells.Electrochimica Acta 2024; 502: 144877.
McAndrews GR, Guo BY, Kaczaral SC, et al. Moisture uptake relaxes stress in metal halide perovskites at the expense of stability.Acs Energy Letters 2024; 9(8): 4153-4161.
Bie T, Li R, Gao X, et al. Halogen-functionalized hole transport materials with strong passivation effects for stable and highly efficient quasi-2D perovskite solar cells.Acs Nano 2024; 18(34): 23615-23624.
Chen JW, Fan X, Wang JZ, et al. 23.81%-efficiency flexible inverted perovskite solar cells with enhanced stability and flexibility via a Lewis base passivation.Acs Nano 2024; 18(29): 19190-19199.
Li RD, Sun ZY, Yao LB, et al. Unraveling the degradation mechanisms of perovskite solar cells under mechanical tensile loads.Acs Nano 2024; 18(35): 24495-24504.
Roe J, Son JG, Park S, et al. Synergistic buried interface regulation of tin-lead perovskite solar cells via co-self-assembled monolayers.Acs Nano 2024; 18(35): 24306-24316.
Tang JW, Lin Y, Yan HC, et al. 20.1% certified efficiency of planar hole transport layer-free carbon-based perovskite solar cells by spacer cation chain length engineering of 2D perovskites.Angewandte Chemie-International Edition 2024; 63(33): e202406167.
Zhou H, Wang WL, Duan YW, et al. Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%.Angewandte Chemie-International Edition 2024; 63(33): e202403068.
Ahn S, Chiu WH, Chu WC, et al. A systematic investigation of PVDF-HFP in perovskite solar cells for improved space mission reliability.Chemical Engineering Journal 2024; 496: 153974.
Ma Z, He B, Tui R, et al. Multifunctional molecular bridge enabled interface passivation and strain release for stable and efficient all-inorganic perovskite solar cells.Chemical Engineering Journal 2024; 498: 155396.
Zhang WY, Zhou QS, Qiu JM, et al. Synergistic effects of the physical modification and chemical passivation enabling efficient perovskite solar cells.Chemical Engineering Journal 2024; 497: 154864.
Yi A, Chae S, Luong HM, et al. Room-temperature-processed perovskite solar cells surpassing 24% efficiency.Joule 2024; 8(7): 2087-2104.
Aftab S, Kabir F, Mukhtar M, et al. Perovskite quantum wires: A review of their exceptional optoelectronic properties and diverse applications in revolutionary technologies.Nano Energy 2024; 129: 109995.
Dai ZY, Yang Y, Huang XF, et al. Interfacial crosslinking benzimidazolium enables eco-friendly inverted perovskite solar cells and modules.Nano Energy 2024; 131: 110190.
Han EQ, Yun JH, Maeng I, et al. Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy.Nano Energy 2024; 131: 110136.
He ZY, Zhang SF, Wei QL, et al. Making a benign buried bottom interface for high-performance perovskite photovoltaics with a chelating molecule.Nano Energy 2024; 130: 110166.
Liu QY, Ou ZP, Ma Z, et al. Perovskite solar cells with self-disintegrating seeds deliver an 83.64% fill factor.Nano Energy 2024; 127: 109751.
Niu GS, Bai BW, Wang YD, et al. Overcoming stability challenges in perovskite solar cells: Addressing Li ions movement in Spiro-OMeTAD layer through nano-graphdiyne incorporation.Nano Energy 2024; 129: 110017.
Qamar MZ, Khalid Z, Shahid R, et al. Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications.Nano Energy 2024; 129: 109994.
Tsvetkov N, Koo D, Kim D, et al. Advances in single-crystal perovskite solar cells: From materials to performance.Nano Energy 2024; 130: 110069.
Wang F, Duan DW, Sun YG, et al. Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics.Nano Energy 2024; 125: 109549.
Zhang FF, Zheng DX, Yu DQ, et al. Perovskite photovoltaic interface: From optimization towards exemption.Nano Energy 2024; 124: 109503.
Zhou XY, Wu JW, Zeng J, et al. Target therapy on buried interface engineering enables stable inverted perovskite solar cells with 25% power conversion efficiency.Nano Energy 2024; 130: 110170.
Ling XF, Guo JJ, Li YP, et al. Chemical bath deposited antimony oxide thin films for efficient perovskite solar cells.Nano Letters 2024; 24(29): 9065-9073.
Wang WT, Holzhey P, Zhou N, et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics.Nature 2024; 632(8025): 294–300.
Xiong SB, Tian FY, Wang F, et al. Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface.Nature Communications 2024; 15(1): 5607.
Zhang Y, Li CY, Zhao HY, et al. Synchronized crystallization in tin-lead perovskite solar cells.Nature Communications 2024; 15(1): 6887.
Zhao CX, Zhou ZW, Almalki M, et al. Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface.Nature Communications 2024; 15(1): 7139.
Zhou HT, Cai K, Yu SQ, et al. Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect.Nature Communications 2024; 15(1): 6679.
Tang HC, Shen ZC, Shen YZ, et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells.Science 2024; 383(6688): 1236-1240.
Zhao XM, Zhang PK, Liu TJ, et al. Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment.Science 2024; 385(6707): 433-438.
Wang RS, Li YF, Jia SS, et al. In situ vanadium modification induced a back interfacial field passivation effect toward efficient kesterite solar cells beyond 11% efficiency.Acs Applied Materials and Interfaces 2024; 16(35): 46341-46350.
Ding DL, Sun YL, Li WB, et al. Efficient window layer modification enabling the remarkable FF and efficiency improvement of kesterite solar cell.Chemical Engineering Journal 2024; 497: 155050.
Liu JL, Wu XY, Xue Y, et al. Se as hetero-nucleation seeds reinforcing intermetallic diffusion for improved electrodeposition-processed CZTS solar cells.Nano Energy 2024; 130: 110183.
Wang Y, Guo J, Siqin L, et al. Enhancing the photovoltaic efficiency of CZTSSe thin-film solar cells via Ag-doping induced defect modulation.Solar Energy Materials and Solar Cells 2024; 277: 113138.
Seo G, Han S, Lee DG, et al. Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots.Chemical Engineering Journal 2024; 496: 154312.
Araji MT, Waqas A, Ali R. Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules.Applied Energy 2024; 375: 124201.
Fang M, Qian W, Qian T, et al. DGImNet: A deep learning model for photovoltaic soiling loss estimation.Applied Energy 2024; 376: 124335.
Hammam AH, Nayel MA, Mohamed MA. Optimal design of sizing and allocations for highway electric vehicle charging stations based on a PV system.Applied Energy 2024; 376: 124284.
Yao WX, Xu A, Kong XR, et al. Analysis of dust deposition law at the micro level and its impact on the annual performance of photovoltaic modules.Energy 2024; 306: 132448.
Chang ZH, Jia KW, Han T, et al. Towards more reliable photovoltaic energy conversion systems: A-supervised perspective on detection.Energy Conversion and Management 2024; 316: 118845.
Gong B, An A, Shi Y, et al. Fault diagnosis of photovoltaic array with multi-module fusion under hyperparameter optimization.Energy Conversion and Management 2024; 319: 118974.
Sarr A, Soro YM, Tossa AK, et al. A new approach for modelling photovoltaic panel configuration maximizing crop yield and photovoltaic array outputs in agrivoltaics systems.Energy Conversion and Management 2024; 309: 118436.
Bai WW, Zhang ZD, Zhang YZ, et al. Virtual coupling control of photovoltaic-energy storage power generation system for efficient power support.Energy Reports 2024; 12: 1742-1752.
Chaaban AK, Alfadl N. A comparative study of machine learning approaches for an accurate predictive modeling of solar energy generation.Energy Reports 2024; 12: 1293-1302.
Diaba SY, Alola AA, Simoes MG, et al. Deep learning-based evaluation of photovoltaic power generation.Energy Reports 2024; 12: 2077-2085.
Lu SD, Liu HD, Wang MH, et al. A novel strategy for multitype fault diagnosis in photovoltaic systems using multiple regression analysis and support vector machines.Energy Reports 2024; 12: 2824-2844.
Pereira S, Canhoto P, Oozeki T, et al. Assessment of thermal modeling of photovoltaic panels for predicting power generation using only manufacturer data.Energy Reports 2024; 12: 1431-1448.
Rivero-Cacho A, Sanchez-Barroso G, Gonzalez-Dominguez J, et al. Long-term power forecasting of photovoltaic plants using artificial neural networks.Energy Reports 2024; 12: 2855-2864.
Kumaraswamy M, Naik KA. Backpropagation artificial neural network-based maximum power point tracking controller with image encryption inspired solar photovoltaic array reconfiguration.Engineering Applications of Artificial Intelligence 2024; 136: 108979.
Sepúlveda-Oviedo EH, Travé-Massuyès L, Subias A, et al. An ensemble learning framework for snail trail fault detection and diagnosis in photovoltaic modules.Engineering Applications of Artificial Intelligence 2024; 137: 109068.
Wu SZ, Kong YG, Xu RD, et al. A feature space class balancing strategy-based fault classification method in solar photovoltaic modules.Engineering Applications of Artificial Intelligence 2024; 136: 108991.
Costanzo L, Rubino G, Rubino L, et al. PFC control signal driven MPPT technique for grid-connected PV systems.IEEE Transactions on Power Electronics 2024; 39(8): 10368-10379.
Turnley JW, Grant A, Schull VZ, et al. The viability of photovoltaics on agricultural land: Can PV solve the food vs fuel debate?Journal of Cleaner Production 2024; 469: 143191.
Lewis MR, Ovaitt S, McDanold B, et al. Artificial ground reflector size and position effects on energy yield and economics of single-axis-tracked bifacial photovoltaics.Progress in Photovoltaics: Research and Applications 2024; 32(10): 675-686.
Parenti M, Fossa M, Delucchi L. A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields.Renewable and Sustainable Energy Reviews 2024; 206: 114858.
Oulefki A, Trongtirakul T, Agaian S, et al. Multi-view VR imaging for enhanced analysis of dust accumulation on solar panels.Solar Energy 2024; 279: 112708.
Abdallah AA, Abdelrahim M, Elgaili M, et al. Degradation of photovoltaic module backsheet materials in desert climate.Solar Energy Materials and Solar Cells 2024; 277: 113118.
Buerhop C, Stroyuk O, Mashkov O, et al. Polymer encapsulation impact on potential-induced degradation in PV modules revealed by a multi-modal field study.Solar Energy Materials and Solar Cells 2024; 277: 113111.
Jankovec M, Brecl K, Bokalič M, et al. Monitoring solar irradiance and PV module performance in mobile applications.Solar Energy Materials and Solar Cells 2024; 277: 113101.
Kumar R, Gupta R. Shunts in crystalline silicon PV modules: A comprehensive review of investigation, characterization, and mitigation.Solar Energy Materials and Solar Cells 2024; 277: 113121.
Reichel C, Forster J, Artha B, et al. Design aspects in consideration of hotspot phenomena in high-performance photovoltaic modules featuring different silicon solar cell architectures.Solar Energy Materials and Solar Cells 2024; 276: 113058.
Carpentieri A, Folini D, Leinonen J, et al. Extending intraday solar forecast horizons with deep generative models.Applied Energy 2025; 377: 124186.
Chen X, Mao HZ, Cheng N, et al. Climate change impacts on global photovoltaic variability.Applied Energy 2024; 374: 124087.
Ding JF, Du DB, Duan DZ, et al. A network analysis of global competition in photovoltaic technologies: Evidence from patent data.Applied Energy 2024; 375: 124010.
Steinbach SA, Blaschke MJ. Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?Applied Energy 2024; 375: 124101.
Wen Y, Lin PZ. Offshore solar photovoltaic potential in the seas around China.Applied Energy 2024; 376: 124279.
Williams HJ, Wang Y, Yuan B, et al. Rethinking agrivoltaic incentive programs: A science-based approach to encourage practical design solutions.Applied Energy 2025; 377: 124272.
Zhao X, Li X, Liu T, et al. How photovoltaic industry policies foster the development of silicon solar cell manufacturing technology: Based on self-attention mechanism.Energy 2024; 308: 132866.
Gu QN, Li SF, Tian SH, et al. Impact of climate risk on energy market risk spillover: Evidence from dynamic heterogeneous network analysis.Energy Economics 2024; 137: 107775.
Lin BQ, Liu YD. Global carbon neutrality and China's contribution: The impact of international carbon market policies on China's photovoltaic product exports.Energy Policy 2024; 193: 114299.
Thonig R, Lilliestam J. Cross-technology legitimacy feedback: The politics of policy-led innovation for complementarity in concentrating solar power.Environmental Innovation and Societal Transitions 2024; 52: 100884.
Pan LW, Chen JJ, Zhao YL, et al. Towards optimal customized electricity pricing via iterative two-layer optimization for consumers and prosumers.Journal of Cleaner Production 2024; 469: 143208.
Wang ZG, Liu Y, Gao F, et al. Environmental impact assessment of the manufacture and use of n-type and p-type photovoltaic modules in China.Journal of Cleaner Production 2024; 470: 143187.
Szabo L, Moner-Girona M, Jaeger-Waldau A, et al. Impacts of large-scale deployment of vertical bifacial photovoltaics on European electricity market dynamics.Nature Communications 2024; 15(1): 6681.
Soler-Castillo Y, Sahni M, Leon-Castro E. The dynamic of photovoltaic resources on its performance predictability, based on two new approaches.Progress in Photovoltaics: Research and Applications 2024; 32(10): 701-745.
Lee C-C, Wang C-W, Liu F. Does green credit promote the performance of new energy companies and how? The role of R&D investment and financial development.Renewable Energy 2024; 235: 121301.
Liu Z, Guo J, Wang X, et al. Prediction of long-term photovoltaic power generation in the context of climate change.Renewable Energy 2024; 235: 121263.
Yang BT, Huang YH, Chen CC. Hydrophobic deep eutectic solvents as novel media for the recycling of waste photovoltaic modules.Chemical Engineering Journal 2024; 498: 155011.
Sanathi R, Banerjee S, Bhowmik S. A technical review of crystalline silicon photovoltaic module recycling.Solar Energy 2024; 281: 112869.
Gallegos MV, Gil-Escrig L, Zanoni KPS, et al. Recycling and reusing ITO substrates from perovskite solar cells: A sustainable perspective.Solar Energy Materials and Solar Cells 2024; 277: 113117.
Lee J-K, Ko S-W, Hwang H-M, et al. Crystalline silicon solar cell with an efficiency of 20.05% remanufactured using 30% silicon scraps recycled from a waste photovoltaic module.Solar Energy Materials and Solar Cells 2024; 277: 113102.
Su P, He Y, Feng Y, et al. Advancements in end-of-life crystalline silicon photovoltaic module recycling: Current state and future prospects.Solar Energy Materials and Solar Cells 2024; 277: 113109.
Wahman M, Surowiak A, Ebin B, et al. PV back sheet recovery from c-Si modules using hot knife technique.Solar Energy Materials and Solar Cells 2024; 276: 113067.
为了帮助读者了解该领域的最新进展,每期《光伏进展》都会列出一份最近发表的与其目标和范围最相关的期刊文章清单。这份清单选自极为广泛的期刊,包括《IEEE 光伏学报》、《太阳能材料和太阳能电池》、《可再生能源》、《可再生和可持续能源评论》、《应用物理学报》和《应用物理快报》。为了帮助读者,本列表分为几大类,但请注意,这些分类并不严格。同时请注意,列入列表并不代表对论文质量的认可。Wang B, Chen Q, Wang MM, et al. PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.Ozturk E, Ogliari E, Sakwa M, et al. Photovoltaic modules fault detection, power output, and parameter estimation:基于电致发光图像的深度学习方法。Almora O, Lopez-Varo P, Escalante R, et al:镍氧化物钝化案例研究。应用物理学杂志》,2024 年,136(9):094502.El Khoury M, Moret M, Tiberj A, et al.应用物理学杂志》,2024 年,136(2):024502.Li JC, Ji Q, Wang R, et al.Sandner D, Sun K, Stadlbauer A, et al.美国化学学会学报》,2024 年;146(29):19852-19862.Li Y, Wright B, Hameiri Z.基于深度学习的室外光伏组件图像透视畸变校正太阳能材料与太阳能电池 2024; 277:Wang S, Wright B, Zhu Y, et al.太阳能材料与太阳能电池 2024; 277:Zhou YN, Zhang HH, Li ZF, et al.Acs Applied Materials and Interfaces 2024; 16(35):Li WK, Zhou R, Wang YK, et al.Su H, Dou C, Dou F, et al. Enhanced photovoltaic performance of silicon solar cells using a down-shift KCa2Mg2(VO4)3 phosphor.Dalton Transactions 2024; 53(35):14648-14655.Wöhler W, Greulich J. 硅太阳能电池中的光捕获,包括对周围的二次反射。IEEE 光伏学报 2024; 14(5):Ide K, Nishihara T, Nakamura K, et al. Evaluation of the effect of texture size and rounding process on three-dimensional flexibility of c-Si wafer.日本应用物理学杂志》,2024 年;63(8):085503.Ziar H. 针对地理市场设计硅基太阳能电池的全球统计评估。Joule 2024; 8(6):1667-1690.Li Y, Ru XN, Yang M, et al. Flexible silicon solar cells with high power-to-weight ratios.自然 2024; 626(7997):Lorenz A, Wenzel T, Pingel S, et al. Towards a cutting-edge metallization process for silicon heterojunction solar cells with very low silver laydown.光伏技术进展:研究与应用》,2024 年,第 32(10)期:655-663.Soler-Castillo Y, Sahni M, Leon-Castro E. 基于两种新方法的光伏资源动态性能预测。光伏技术进展:研究与应用》,2024 年,第 32(10)期,第 701-745 页:701-745.Xie A, Wang G, Sun Y, et al. Bifacial silicon heterojunction solar cells using transparent-conductive-oxide- and dopant-free electron-selective contacts.光伏学进展:Photovoltaics: Research and Applications 2024; 32(10):Ding D, Gao C, Wang X, et al.太阳能材料与太阳能电池 2024; 277:Jiang XL, Chen XY, Zhang JB, et al:掺磷氢化碳化硅:薄膜形成、性能及其在硅异质结太阳能电池上的应用。太阳能材料与太阳能电池,2024;277:Kashizadeh A, Basnet R, Black L, et al.太阳能材料和太阳能电池》,2024 年,第 277 期:Mette A, Hörnlein S, Stenzel F, et al.使用 LECO 的 Q.ANTUM NEO 电池效率超过 25.5%。 Dai ZY, Yang Y, Huang XF, et al.Han EQ, Yun JH, Maeng I, et al. Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy.He ZY, Zhang SF, Wei QL, et al.Liu QY, Ou ZP, Ma Z, et al. Perovskite solar cells with self-disintegrating seeds deliver an 83.64% fill factor.Nano Energy 2024; 127: 109751.Niu GS, Bai BW, Wang YD, et al:通过纳米石墨烯的加入解决锂离子在斯派罗-OMeTAD 层中的移动问题。Nano Energy 2024; 129:110017.Qamar MZ, Khalid Z, Shahid R, et al. 通过自供电物联网应用的柔性过氧化物光伏技术推进室内能量收集。纳米能源 2024; 129:Tsvetkov N, Koo D, Kim D, et al:从材料到性能。Wang F, Duan DW, Sun YG, et al. Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics.张富强、郑德鑫、于大庆等:从优化到豁免。Zhou XY, Wu JW, Zeng J, et al. Target therapy on buried interface engineering enables stable inverted perovskite solar cells with 25% power conversion efficiency.Ling XF, Guo JJ, Li YP, et al. Chemical bath deposited antimony oxide thin films for efficient perovskite solar cells.Nano Letters 2024; 24(29):9065-9073.Wang WT, Holzhey P, Zhou N, et al.Nature 2024; 632(8025):Xiong SB, Tian FY, Wang F, et al.自然-通讯》,2024 年,第 15(1)期:5607.Zhang Y, Li CY, Zhao HY, et al.自然通讯 2024; 15(1):6887.Zhao CX, Zhou ZW, Almalki M, et al.自然通讯 2024; 15(1):Zhou HT, Cai K, Yu SQ, et al.自然通讯 2024; 15(1):6679.Tang HC, Shen ZC, Shen YZ, et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells.Science 2024; 383(6688):1236-1240.Zhao XM, Zhang PK, Liu TJ, et al.433-438.Wang RS, Zhang PK, Liu TJ, et al:Wang RS, Li YF, Jia SS, et al. In situ vanadium modification induced a back interfacial field passivation effect toward efficient kesterite solar cells beyond 11% efficiency.Acs Applied Materials and Interfaces 2024; 16(35):Ding DL, Sun YL, Li WB, et al.Liu JL, Wu XY, Xue Y, et al. Se as hetero-nucleation seeds reinforcing intermetallic diffusion for improved electrodeposition-processed CZTS solar cells.Wang Y, Guo J, Siqin L, et al.太阳能材料和太阳能电池,2024;277:Seo G, Han S, Lee DG, et al.Chemical Engineering Journal 2024; 496: 154312.Araji MT, Waqas A, Ali R. Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules.应用能源 2024; 375: 124201.Fang M, Qian W, Qian T, et al. DGImNet:用于光伏污损估计的深度学习模型。Applied Energy 2024; 376: 124335.Hammam AH, Nayel MA, Mohamed MA.基于光伏系统的高速公路电动汽车充电站规模和分配的优化设计。Yao WX, Xu A, Kong XR, et al.Chang ZH, Jia KW, Han T, et al:有监督的检测视角。Energy Conversion and Management 2024; 316: 118845.Gong B, An A, Shi Y, et al. 应用能源 2025; 377: 124272.Zhao X, Li X, Liu T, et al:基于自我关注机制.能源 2024; 308: 132866.Gu QN, Li SF, Tian SH, et al:动态异质网络分析的证据.能源经济 2024; 137: 107775.Lin BQ, Liu YD.全球碳中和与中国的贡献:国际碳市场政策对中国光伏产品出口的影响.能源政策 2024;193:114299.Thonig R, Lilliestam J. Cross-technology legitimacy feedback:政策主导的聚光太阳能互补创新政治。Pan LW, Chen JJ, Zhao YL, et al. Towards optimal customized electricity pricing via iterative two-layer optimization for consumers and prosumers.Wang ZG, Liu Y, Gao F, et al. Environmental impact assessment of the manufacturing and use of n-type and p-type photovoltaic modules in China.Szabo L, Moner-Girona M, Jaeger-Waldau A, et al.自然通讯》,2024 年,第 15(1)期:6681.Soler-Castillo Y, Sahni M, Leon-Castro E. 基于两种新方法的光伏资源动态性能预测。光伏技术进展:研究与应用 2024; 32(10):701-745.Lee C-C, Wang C-W, Liu F.绿色信贷对新能源公司业绩的促进作用以及如何促进?研发投资和金融发展的作用.Renewable Energy 2024; 235: 121301.Liu Z, Guo J, Wang X, et al. Prediction of long-term photovoltaic power generation in the context of climate change.Renewable Energy 2024; 235: 121263.Yang BT, Huang YH, Chen CC.疏水性深共晶溶剂作为废弃光伏组件回收利用的新型介质。Sanathi R, Banerjee S, Bhowmik S. A technical review of crystalline silicon photovoltaic module recycling.太阳能 2024; 281:Gallegos MV, Gil-Escrig L, Zanoni KPS, et al:可持续发展的视角。太阳能材料和太阳能电池 2024; 277:Lee J-K、Ko S-W、Hwang H-M,et al.太阳能材料和太阳能电池 2024; 277:Su P、He Y、Feng Y 等.报废晶体硅光伏组件回收利用的进展:太阳能材料与太阳能电池,2024 年;277: 113102.Su P, He Y, Feng Y, et al.太阳能材料与太阳能电池》,2024 年,第 277 期:113109.Wahman M, Surowiak A, Ebin B, et al. 使用热刀技术从晶体硅组件中回收光伏背板。太阳能材料与太阳能电池 2024; 276: 113067.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.