Subhayu Sen, John Scott O’Dell, Yongzhe Yan, Lawrence Heilbronn, Haibin Ning, Miria Finckenor, Meghan Carrico, Selvum Pillay
{"title":"Space Environmental Effects on Multifunctional Radiation Shielding Materials","authors":"Subhayu Sen, John Scott O’Dell, Yongzhe Yan, Lawrence Heilbronn, Haibin Ning, Miria Finckenor, Meghan Carrico, Selvum Pillay","doi":"10.1029/2024EA003681","DOIUrl":null,"url":null,"abstract":"<p>The two primary material requirements for a crewed habitat or spacecraft to operate beyond low earth orbit (LEO) include effective radiation shielding against the space radiation and secondary neutron environment and sufficient structural and thermal integrity. In this context it is mandatory to study the effect of long duration space environment on any proposed multifunctional radiation shielding material. In this paper we discuss two radiation shielding composite architectures and their long duration performance in LEO. Samples were flown on NASA's The Materials International Space Station Experiment (MISSE) platform and their structural, optical, and radiation shielding capabilities were characterized pre and post flight. Results showed composite architecture can be key in determining expected damage irrespective of sample placement orientation on the space station. A surface layer with a protective or sacrificial coating can be instrumental in minimizing property degradation even when exposed to orientations with high estimated sun hours and high fluence of atomic oxygen.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003681","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003681","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The two primary material requirements for a crewed habitat or spacecraft to operate beyond low earth orbit (LEO) include effective radiation shielding against the space radiation and secondary neutron environment and sufficient structural and thermal integrity. In this context it is mandatory to study the effect of long duration space environment on any proposed multifunctional radiation shielding material. In this paper we discuss two radiation shielding composite architectures and their long duration performance in LEO. Samples were flown on NASA's The Materials International Space Station Experiment (MISSE) platform and their structural, optical, and radiation shielding capabilities were characterized pre and post flight. Results showed composite architecture can be key in determining expected damage irrespective of sample placement orientation on the space station. A surface layer with a protective or sacrificial coating can be instrumental in minimizing property degradation even when exposed to orientations with high estimated sun hours and high fluence of atomic oxygen.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.