{"title":"A GaN-on-SiC Millimeter-Wave Low Noise Amplifier Using Hybrid-Matching Technique for 5G n258 Applications","authors":"Liang Lan, Zhihao Zhang, Chaoyu Huang, Gary Zhang","doi":"10.1002/mop.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This letter details the design and implementation of a millimeter-wave (mm-Wave) low noise amplifier (LNA) employing 150-nm gallium nitride on silicon carbide (GaN-on-SiC) high electron mobility transistor technology, specifically tailored for fifth-generation (5G) applications. The proposed GaN-based LNA integrates a hybrid matching topology alongside a co-design strategy, thereby optimizing the noise figure (NF) by minimizing interstage matching components. The fabricated LNA, spanning a total chip area of 2.3 × 1.4 mm², exhibits a linear gain in the range of 17.41–19.2 dB and maintains an NF within 2.32–3.06 dB. Additionally, commendable input/output return losses exceeding 7.5 dB are achieved across the 23–27.5 GHz, with the apparatus consuming approximately 150 mW.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"66 11","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter details the design and implementation of a millimeter-wave (mm-Wave) low noise amplifier (LNA) employing 150-nm gallium nitride on silicon carbide (GaN-on-SiC) high electron mobility transistor technology, specifically tailored for fifth-generation (5G) applications. The proposed GaN-based LNA integrates a hybrid matching topology alongside a co-design strategy, thereby optimizing the noise figure (NF) by minimizing interstage matching components. The fabricated LNA, spanning a total chip area of 2.3 × 1.4 mm², exhibits a linear gain in the range of 17.41–19.2 dB and maintains an NF within 2.32–3.06 dB. Additionally, commendable input/output return losses exceeding 7.5 dB are achieved across the 23–27.5 GHz, with the apparatus consuming approximately 150 mW.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication