Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Juan Carlos Alvarado-Pérez, Miguel Angel Garcia, Domenec Puig
{"title":"Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings","authors":"Juan Carlos Alvarado-Pérez,&nbsp;Miguel Angel Garcia,&nbsp;Domenec Puig","doi":"10.1002/aisy.202400178","DOIUrl":null,"url":null,"abstract":"<p>Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mtext>NX</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$R_{\\text{NX}}$</annotation>\n </semantics></math> curves), cluster induction (<i>V</i> measure), and classification accuracy than the most relevant dimension reduction methods.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation ( R NX $R_{\text{NX}}$ curves), cluster induction (V measure), and classification accuracy than the most relevant dimension reduction methods.

Abstract Image

通过神经嵌入的集合学习降低多维结构化和非结构化数据集的维度
降维旨在将高维数据集投射到低维空间中。它试图保留原始数据点之间的拓扑关系和/或诱导聚类。NetDRm 是一种基于神经集合学习的在线降维方法,它以协同的方式整合了不同的降维方法。NetDRm 专为结构化(如图像)或非结构化(如点云、表格数据)的多维点数据集而设计。它首先要训练一组深度残差编码器,学习应用于输入数据集的多种降维方法所引起的嵌入。随后,密集神经网络通过强调拓扑保存或聚类归纳来整合生成的编码器。在广泛使用的多维数据集(点云流形、图像数据集、表格记录数据集)上进行的实验表明,与最相关的降维方法相比,所提出的方法在拓扑保持(R NX $R_{text\{NX}}$ 曲线)、聚类诱导(V 测量)和分类准确性方面都能产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信